Decoding fMRI Brain Activity Patterns in Real-Time: From Basic Research to Clinical Applications

author: Rainer Goebel, Faculty of Psychology, Maastricht University
published: Dec. 3, 2012,   recorded: September 2012,   views: 3592
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Recent progress in computer hard- and software allows the sophisticated analysis of fMRI data in real-time including "brain reading" methods such as multivariate pattern analysis. Advanced online fMRI data analysis provides the basis for brain-computer Interface (BCI) applications such as neurofeedback and motor-independent communication. In neurofeedback studies, subjects observe and learn to modulate their own brain activity during an ongoing fMRI measurement. Many neurofeedback studies have demonstrated that with sufficient practice, subjects are indeed able to learn to modulate brain activity in specific brain areas or networks using mental tasks. These results are important for basic neuroscience research, because they allow to study the degree to which the brain can modulate its own activity and to potentially unravel the function of hitherto unknown brain areas. Besides basic research applications, we have recently shown that fMRI neurofeedback may become a valuable therapeutic tool to help patients suffering from Parkinson's disease and mood disorders such as depression. Furthermore, we have shown that activation patterns evoked by participants can be ‘decoded’ and interpreted online as letters of the alphabet offering the possibility for people with severe motor impairments to ‘write’ letters purely controlled by mental imagery. In order to allow patients with severe motor impairments to use the developed communication tool at the bedside, we currently transfer our approach to functional near-infrared spectroscopy (fNIRS) that, like fMRI, measures hemodynamic brain signals. Finally we will present recent results from ultra-high field fMRI measurements (7 Tesla scanners) that achieve sub-millimeter functional spatial resolution allowing to crack the representational code within specialized brain areas at the level of cortical columns and cortical layers. These new possibilities are extremely important to advance our knowledge of brain organization but they will also enable more content-specific BCI applications.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: