Feature Selection via Block-Regularized Regression

author: Seyoung Kim, Carnegie Mellon University
published: Oct. 21, 2008,   recorded: September 2008,   views: 5658
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Identifying co-varying causal elements in very high dimensional feature space with internal structures, e.g., a space with as many as millions of linearly ordered features, as one typically encounters in problems such as whole genome association (WGA) mapping, remains an open problem in statistical learning. We propose a block-regularized regression model for sparse variable selection in a high-dimensional space where the covariates are linearly ordered, and are possibly subject to local statistical linkages (e.g., block structures) due to spacial or temporal proximity of the features.

Our goal is to identify a small subset of relevant covariates that are not merely from random positions in the ordering, but grouped as contiguous blocks from large number of ordered covariates. Following a typical linear regression framework between the features and the response, our proposed model employs a sparsity-enforcing Laplacian prior for the regression coefficients, augmented by a 1st-order Markovian process along the feature sequence that "activates" the regression coefficients in a coupled fashion. We describe a sampling-based learning algorithm and demonstrate the performance of our method on simulated and biological data for marker identification under WGA.

See Also:

Download slides icon Download slides: cmulls08_kim_fsbrr_01.ppt (1.1 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: