Lower bounds on the performance of polynomial-time algorithms for sparse linear regression

author: Yuchen Zhang, Department of Electrical Engineering and Computer Sciences, UC Berkeley
published: July 15, 2014,   recorded: June 2014,   views: 3051
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Under a standard assumption in complexity theory (NP not in P/poly), we demonstrate a gap between the minimax prediction risk for sparse linear regression that can be achieved by polynomial-time algorithms, and that achieved by optimal algorithms. In particular, when the design matrix is ill-conditioned, the minimax prediction loss achievable by polynomial-time algorithms can be substantially greater than that of an optimal algorithm. This result is the first known gap between polynomial and optimal algorithms for sparse linear regression, and does not depend on conjectures in average-case complexity.

See Also:

Download slides icon Download slides: colt2014_zhang_algorithms.pdf (305.6 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: