Deep Learning Summer School, Montreal 2016
Deep neural networks that learn to represent data in multiple layers of increasing abstraction have dramatically improved the state-of-the-art for speech recognition, object recognition, object detection, predicting the activity of drug molecules, and many other tasks. Deep learning discovers intricate structure in large datasets by building distributed representations, either via supervised, unsupervised or reinforcement learning.
The Deep Learning Summer School 2016 is aimed at graduate students and industrial engineers and researchers who already have some basic knowledge of machine learning (and possibly but not necessarily of deep learning) and wish to learn more about this rapidly growing field of research.
Invited Talks | ||||
Contributed Talks | ||||
Dissertation or article (missing values in microarray DNA of the gene ontology clustering neural network convolution) like. Please help me.