General Automatic Human Shape and Motion Capture Using Volumetric Contour Cues

author: Helge Rhodin, Max Planck Institute for Informatics, Max Planck Institute
published: Oct. 24, 2016,   recorded: October 2016,   views: 1409
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Markerless motion capture algorithms require a 3D body with properly personalized skeleton dimension and/or body shape and appearance to successfully track a person. Unfortunately, many tracking methods consider model personalization a different problem and use manual or semi-automatic model initialization, which greatly reduces applicability. In this paper, we propose a fully automatic algorithm that jointly creates a rigged actor model commonly used for animation – skeleton, volumetric shape, appearance, and optionally a body surface – and estimates the actor’s motion from multi-view video input only. The approach is rigorously designed to work on footage of general outdoor scenes recorded with very few cameras and without background subtraction. Our method uses a new image formation model with analytic visibility and analytically differentiable alignment energy. For reconstruction, 3D body shape is approximated as a Gaussian density field. For pose and shape estimation, we minimize a new edge-based alignment energy inspired by volume ray casting in an absorbing medium. We further propose a new statistical human body model that represents the body surface, volumetric Gaussian density, and variability in skeleton shape. Given any multi-view sequence, our method jointly optimizes the pose and shape parameters of this model fully automatically in a spatiotemporal way.

See Also:

Download slides icon Download slides: eccv2016_rhodin_human_shape.pdf (25.2 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: