Deep Automatic Portrait Matting
published: Oct. 24, 2016, recorded: October 2016, views: 1929
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
We propose an automatic image matting method for portrait images. This method does not need user interaction, which was however essential in most previous approaches. In order to accomplish this goal, a new end-to-end convolutional neural network (CNN) based framework is proposed taking the input of a portrait image. It outputs the matte result. Our method considers not only image semantic prediction but also pixel-level image matte optimization. A new portrait image dataset is constructed with our labeled matting ground truth. Our automatic method achieves comparable results with state-of-the-art methods that require specified foreground and background regions or pixels. Many applications are enabled given the automatic nature of our system.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: