Regularized Sparse Kernel Slow Feature Analysis

author: Wendelin Böhmer, Department of Software Engineering and Theoretical Computer Science, Faculty VI Electrical Engineering and Computer Sciences, TU Berlin
published: Oct. 3, 2011,   recorded: September 2011,   views: 2863
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

This paper develops a kernelized slow feature analysis (SFA) algorithm. SFA is an unsupervised learning method to extract features which encode latent variables from time series. Generative relationships are usually complex, and current algorithms are either not powerful enough or tend to over-fit. We make use of the kernel trick in combination with sparsification to provide a powerful function class for large data sets. Sparsity is achieved by a novel matching pursuit approach that can be applied to other tasks as well. For small but complex data sets, however, the kernel SFA approach leads to over-fitting and numerical instabilities. To enforce a stable solution, we introduce regularization to the SFA objective. Versatility and performance of our method are demonstrated on audio and video data sets.

See Also:

Download slides icon Download slides: ecmlpkdd2011_boehmer_regularized_01.pdf (788.4 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: