Spatial Ontology-Mediated Query Answering over Mobility Streams
published: July 10, 2017, recorded: May 2017, views: 857
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
The development of (semi)-autonomous vehicles and communication between vehicles and infrastructure (V2X) will aid to improve road safety by identifying dangerous traffic scenes. A key to this is the Local Dynamic Map (LDM), which acts as an integration platform for static, semi-static, and dynamic information about traffic in a geographical context. At present, the LDM approach is purely database-oriented with simple query capabilities, while an elaborate domain model as captured by an ontology and queries over data streams that allow for semantic concepts and spatial relationships are still missing. To fill this gap, we present an approach in the context of ontology-mediated query answering that features conjunctive queries over DL-Lite AA ontologies allowing spatial relations and window operators over streams having a pulse. For query evaluation, we present a rewriting approach to ordinary DL-Lite AA that transforms spatial relations involving epistemic aggregate queries and uses a decomposition approach that generates a query execution plan. Finally, we report on experiments with two scenarios and evaluate our implementation based on the stream RDBMS PipelineDB.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: