Ontology-Driven Sentiment Analysis of Product and Service Aspects

author: Kim Schouten, Erasmus School of Economics, Erasmus University Rotterdam
published: July 10, 2018,   recorded: June 2018,   views: 744
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

With so much opinionated, but unstructured, data available on the Web, sentiment analysis has become popular with both companies and researchers. Aspect-based sentiment analysis goes one step further by relating the expressed sentiment in a text to the topic, or aspect, the sentiment is expressed on. This enables a detailed analysis of the sentiment expressed in, for example, reviews of products or services. In this paper we propose a knowledge-driven approach to aspect sentiment analysis that complements traditional machine learning methods. By utilizing common domain knowledge, as encoded in an ontology, we improve the sentiment analysis of a given aspect. The domain knowledge is used to determine which words are expressing sentiment on the given aspect as well as to disambiguate sentiment carrying words or phrases. The proposed method has a highly competitive performance of over 80% accuracy on both SemEval-2015 and SemEval-2016 data, significantly outperforming the considered baselines.

See Also:

Download slides icon Download slides: eswc2018_schouten_service_aspects_01.pdf (2.7 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: