TinderBook: Fall in Love with Culture
published: July 19, 2019, recorded: June 2019, views: 22
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
More than 2 millions of new books are published every year and choosing a good book among the huge amount of available options can be a challenging endeavor. Recommender systems help in choosing books by providing personalized suggestions based on the user reading history. However, most book recommender systems are based on collaborative filtering, involving a long onboarding process that requires to rate many books before providing good recommendations. Tinderbook provides book recommendations, given a single book that the user likes, through a card-based playful user interface that does not require an account creation. Tinderbook is strongly rooted in semantic technologies, using the DBpedia knowledge graph to enrich book descriptions and extending a hybrid state-of-the-art knowledge graph embeddings algorithm to derive an item relatedness measure for cold start recommendations. Tinderbook is publicly available (http://www.tinderbook.it) and has already generated interest in the public, involving passionate readers, students, librarians, and researchers. The online evaluation shows that Tinderbook achieves almost 50% of precision of the recommendations.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Reviews and comments:
Tinderbook is strongly rooted in semantic technologies, using the DBpedia knowledge graph to enrich book descriptions and extending a hybrid ...
Write your own review or comment: