Camera Pose Voting for Large-Scale Image-Based Localization

author: Bernhard Zeisl, Department of Computer Science, ETH Zurich
published: Feb. 10, 2016,   recorded: December 2015,   views: 2111
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Image-based localization approaches aim to determine the camera pose from which an image was taken. Finding correct 2D-3D correspondences between query image features and 3D points in the scene model becomes harder as the size of the model increases. Current state-of-the-art methods therefore combine elaborate matching schemes with camera pose estimation techniques that are able to handle large fractions of wrong matches. In this work we study the benefits and limitations of spatial verification compared to appearance-based filtering. We propose a voting-based pose estimation strategy that exhibits O(n) complexity in the number of matches and thus facilitates to consider much more matches than previous approaches – whose complexity grows at least quadratically. This new outlier rejection formulation enables us to evaluate pose estimation for 1-to-many matches and to surpass the state-of-the-art. At the same time, we show that using more matches does not automatically lead to a better performance.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: