Net2Net: Accelerating Learning via Knowledge Transfer

author: Tianqi Chen, Department of Computer Science and Engineering, University of Washington
published: May 27, 2016,   recorded: May 2016,   views: 4089
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

We introduce techniques for rapidly transferring the information stored in one neural net into another neural net. The main purpose is to accelerate the training of a significantly larger neural net. During real-world workflows, one often trains very many different neural networks during the experimentation and design process. This is a wasteful process in which each new model is trained from scratch. Our Net2Net technique accelerates the experimentation process by instantaneously transferring the knowledge from a previous network to each new deeper or wider network. Our techniques are based on the concept of function-preserving transformations between neural network specifications. This differs from previous approaches to pre-training that altered the function represented by a neural net when adding layers to it. Using our knowledge transfer mechanism to add depth to Inception modules, we demonstrate a new state of the art accuracy rating on the ImageNet dataset.

See Also:

Download slides icon Download slides: iclr2016_chen_net2net_01.pdf (752.7 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: