Best Paper - Information-Theoretic Metric Learning

author: Brian Kulis, University of Texas at Austin
published: June 22, 2007,   recorded: June 2007,   views: 17742
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

In this paper, we present an information-theoretic approach to learning a Mahalanobis distance function. We formulate the problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the distance function. We express this problem as a particular Bregman optimization problem: that of minimizing the LogDet divergence subject to linear constraints. Our resulting algorithm has several advantages over existing methods. First, our method can handle a wide variety of constraints and can optionally incorporate a prior on the distance function. Second, it is fast and scalable. Unlike most existing methods, no eigenvalue computations or semi-definite programming are required. We also present an online version and derive regret bounds for the resulting algorithm. Finally, we evaluate our method on a recent error reporting system for software called Clarify, in the context of metric learning for nearest neighbor classification, as well as on standard data sets.

See Also:

Download slides icon Download slides: icml07_kulis_itml.pdf (268.4 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: