Learning for Efficient Retrieval of Structured Data with Noisy Queries
published: July 27, 2007, recorded: July 2007, views: 3528
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
Increasingly large collections of structured data necessitate the development of efficient, noise-tolerant retrieval tools. In this work, we consider this issue and describe an approach to learn a similarity function that is not only accurate, but that also increases the effectiveness of retrieval data structures. We present an algorithm that uses functional gradient boosting to maximize both retrieval accuracy and the retrieval efficiency of vantage point trees. We demonstrate the effectiveness of our approach on two datasets, including a moderately sized real-world dataset of folk music.
See Also:
Download slides: icml07_corvallis_parker_charles.pdf (554.8 KB)
Download slides: icml07_corvallis_parker_charles.ppt (359.5 KB)
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: