Fast Incremental Proximity Search in Large Graphs

author: Purnamrita Sarkar, Machine Learning Department, School of Computer Science, Carnegie Mellon University
published: Aug. 1, 2008,   recorded: July 2008,   views: 5440
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

In this paper we investigate two aspects of ranking problems on large graphs. First, we augment the deterministic pruning algorithm in Sarkar and Moore (2007) with sampling techniques to compute approximately correct rankings with high probability under random walk based proximity measures at query time. Second, we prove some surprising locality properties of these proximity measures by examining the short term behavior of random walks. The proposed algorithm can answer queries on the fly without caching any information about the entire graph. We present empirical results on a 600,000 node author-word-citation graph from the Citeseer domain on a single CPU machine where the average query processing time is around 4 seconds. We present quantifiable link prediction tasks. On most of them our techniques outperform Personalized Pagerank, a well-known diffusion based proximity measure.

See Also:

Download slides icon Download slides: icml08_sarkar_slg_01.ppt (1.1 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: