Boosting with Structural Sparsity

author: John Duchi, Department of Electrical Engineering and Computer Sciences, UC Berkeley
published: Aug. 26, 2009,   recorded: June 2009,   views: 3953
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

We derive generalizations of AdaBoost and related gradient-based coordinate descent methods that incorporate sparsity-promoting penalties for the norm of the predictor that is being learned. The end result is a family of coordinate descent algorithms that integrate forward feature induction and back-pruning through regularization and give an automatic stopping criterion for feature induction. We study penalties based on the ℓ1 , ℓ2 , and ℓ ∞ norms of the predictor and introduce mixed-norm penalties that build upon the initial penalties. The mixed-norm regularizers facilitate structural sparsity in parameter space, which is a useful property in multiclass prediction and other related tasks. We report empirical results that demonstrate the power of our approach in building accurate and structurally sparse models.

See Also:

Download slides icon Download slides: icml09_duchi_bwss_01.pdf (1.9 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: