Discovering Temporal Causal Relations from Subsampled Data

author: Kun Zhang, Max Planck Institute for Intelligent Systems, Max Planck Institute
published: Dec. 5, 2015,   recorded: October 2015,   views: 1725
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Granger causal analysis has been an important tool for causal analysis for time series in various fields, including neuroscience and economics, and recently it has been extended to include instantaneous effects between the time series to explain the contemporaneous dependence in the residuals. In this paper, we assume that the time series at the true causal frequency follow the vector autoregressive model. We show that when the data resolution becomes lower due to subsampling, neither the original Granger causal analysis nor the extended one is able to discover the underlying causal relations. We then aim to answer the following question: can we estimate the temporal causal relations at the right causal frequency from the subsampled data? Traditionally this suffers from the identifiability problems: under the Gaussianity assumption of the data, the solutions are generally not unique. We prove that, however, if the noise terms are non-Gaussian, the underlying model for the high frequency data is identifiable from subsampled data under mild conditions. We then propose an Expectation-Maximization (EM) approach and a variational inference approach to recover temporal causal relations from such subsampled data. Experimental results on both simulated and real data are reported to illustrate the performance of the proposed approaches.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: