3D printing biomaterials for regenerative medicine

author: Rok Kocen, Department for Nanostructured Materials, Jožef Stefan Institute
published: May 23, 2017,   recorded: April 2017,   views: 1588
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

There have been many advances in the field of 3D printing or additive manufacturing in the last years, and particularly 3D printing living organs is a hot topic. While directly printing living organ is not (yet) possible, researchers in the field of tissue engineering are using biocompatible materials to print 3D structures also known as scaffolds. These scaffolds are used together with stem cells and placed into a bioreactor or in a patient, where the organ or tissue can grow. Materials for such applications have to be biocompatible, biodegradable and provide appropriate conditions to house cells. On top of that, the material should be ‘printable’.

We have been working with gellan gum composites that showed promising results as a scaffold material1. Gellan gum samples are made by pouring hot polymer solution into a mould, where the solution cools down and gels into a hydrogel. Rheological studies of gellan gum2 showed how we can tailor gelation by changing the amount of Ca2+ ions. Addition of Ca2+ ions will increase temperature of gelation as well as increase the visco(elasti)city of the initial solution. Ca2+ ions can be added in the form of CaCl2 or by dissolution of bioactive glass (BAG) particles in the gellan gum solution.

A specific type of 3D printing technique called ‘fused deposition modelling’ (FDM) was chosen as the most appropriate. This technique works by adding layer by layer of material that is usually in a form of a filament. Since gellan gum could not be made into a filament, we had to modify the printer to print it. The idea was to keep the suspension of gellan gum hot in a syringe, which would then cool down as it exits from the syringe needle (see Figure 1). By adjusting temperature in the syringe, changing the amount of Ca2+ ions, adding forced cooling at the nozzle, etc. we can drastically improve printing capabilities.

See Also:

Download slides icon Download slides: ipssc2017_kocen_regenerative_medicine_01.pdf (973.6 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 FitBoyAwe, May 27, 2021 at 12:49 p.m.:

Finding a reputable Vinyl Cutter in the UK might be difficult at times, owing to the large number of options available online.

It is advantageous to use the appropriate instruments because you want to ensure a clean cut and a straight line. I understand how difficult it may be to find anything reliable, which is why I offer my advice.

I recently tested the top ten vinyl cutters in the UK at https://topvinylcutters.com/best-viny..., and today I'm compiling my findings and making a list for you!

Write your own review or comment:

make sure you have javascript enabled or clear this field: