Fine-grained Evaluation of Rule- and Embedding-based Systems for Knowledge Graph Completion

author: Manuel Fink, University of Mannheim
published: Nov. 22, 2018,   recorded: October 2018,   views: 3016
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Over the recent years embeddings have attracted increasing research focus as a means for knowledge graph completion. Similarly, rule-based systems have been studied for this task in the past as well. What is missing from existing works so far, is a common evaluation that includes more than one type of method. We close this gap by comparing representatives of both types of systems in a frequently used evaluation format. Leveraging the explanatory qualities of rule-based systems, we present a fine-grained evaluation scenario that gives insight into characteristics of the most popular datasets and points out the different strengths and shortcomings of the examined approaches. Our results show that models such as TransE, RESCAL or HolE have problems in solving certain types of completion tasks that can be solved by a rule-based approach with high precision. At the same time there are other completion tasks that are difficult for rule-based systems. Motivated by these insights we combine both families of approaches via ensemble learning. The results support our assumption that the two methods can complement each other in a beneficial way.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: