Grocery Shopping Recommendations Based on Basket-Sensitive Random Walk

author: Ming Li, Unilever
published: Sept. 14, 2009,   recorded: June 2009,   views: 4943
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

We describe a recommender system in the domain of grocery shopping. While recommender systems have been widely studied, this is mostly in relation to leisure products (e.g. movies, books and music) with non-repeated purchases. In grocery shopping, however, consumers will make multiple purchases of the same or very similar products more frequently than buying entirely new items. The proposed recommendation scheme offers several advantages in addressing the grocery shopping problem, namely: 1) a product similarity measure that suits a domain where no rating information is available; 2) a basket sensitive random walk model to approximate product similarities by exploiting incomplete neighborhood information; 3) online adaptation of the recommendation based on the current basket and 4) a new performance measure focusing on products that customers have not purchased before or purchase infrequently. Empirical results benchmarking on three real-world data sets demonstrate a performance improvement of the proposed method over other existing collaborative filtering models.

See Also:

Download slides icon Download slides: kdd09_li_gsrbbsrw_01.ppt (952.5┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: