Community Detection in Graphs through Correlation

author: Lian Duan, New Jersey Institute of Technology
published: Oct. 7, 2014,   recorded: August 2014,   views: 1919
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Community detection is an important task for social networks, which helps us understand the functional modules on the whole network. Among different community detection methods based on graph structures, modularity-based methods are very popular recently, but suffer a well-known resolution limit problem. This paper connects modularity-based methods with correlation analysis by subtly reformatting their math formulas and investigates how to fully make use of correlation analysis to change the objective function of modularity-based methods, which provides a more natural and effective way to solve the resolution limit problem. In addition, a novel theoretical analysis on the upper bound of different objective functions helps us understand their bias to different community sizes, and experiments are conducted on both real life and simulated data to validate our findings.

See Also:

Download slides icon Download slides: kdd2014_duan_community_detection_01.pdf (1.3┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: