FRAUDAR: Bounding Graph Fraud in the Face of Camouflage

author: Bryan Hooi, Machine Learning Department, Carnegie Mellon University
published: Sept. 25, 2016,   recorded: August 2016,   views: 1520
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Given a bipartite graph of users and the products that they review, or followers and followees, how can we detect fake reviews or follows? Existing fraud detection methods (spectral, etc.) try to identify dense subgraphs of nodes that are sparsely connected to the remaining graph. Fraudsters can evade these methods using camouflage, by adding reviews or follows with honest targets so that they look “normal”. Even worse, some fraudsters use hijacked accounts from honest users, and then the camouflage is indeed organic.

Our focus is to spot fraudsters in the presence of camouflage or hijacked accounts. We propose FRAUDAR, an algorithm that (a) is camouflage-resistant, (b) provides upper bounds on the effectiveness of fraudsters, and (c) is effective in real-world data. Experimental results under various attacks show that FRAUDAR outperforms the top competitor in accuracy of detecting both camouflaged and non-camouflaged fraud. Additionally, in real-world experiments with a Twitter follower-followee graph of 1.47 billion edges, FRAUDAR successfully detected a subgraph of more than 4000 detected accounts, of which a majority had tweets showing that they used follower-buying services.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: