Catch Me If You Can: Detecting Pickpocket Suspects from Large-Scale Transit Records
published: Sept. 22, 2016, recorded: August 2016, views: 1420
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
Massive data collected by automated fare collection (AFC) systems provide opportunities for studying both personal traveling behaviors and collective mobility patterns in the urban area. Existing studies on the AFC data have primarily focused on identifying passengers’ movement patterns. In this paper, however, we creatively leveraged such data for identifying thieves in the public transit systems. In-deed, stopping pickpockets in the public transit systems has been critical for improving passenger satisfaction and public safety. However, it is challenging to tell thieves from regular passengers in practice. To this end, we developed a suspect detection and surveillance system, which can identify pick-pocket suspects based on their daily transit records. Specifically, we first extracted a number of features from each passenger’s daily activities in the transit systems. Then, we took a two-step approach that exploits the strengths of unsupervised outlier detection and supervised classification models to identify thieves, who exhibit abnormal traveling behaviors. Experimental results demonstrated the effective-ness of our method. We also developed a prototype system with a user-friendly interface for the security personnel.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: