Fast Memory-efficient Anomaly Detection in Streaming Heterogeneous Graphs

author: Emaad Manzoor, Carnegie Mellon University
published: Sept. 27, 2016,   recorded: August 2016,   views: 1361
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Given a stream of heterogeneous graphs containing different types of nodes and edges, how can we spot anomalous ones in real-time while consuming bounded memory? This problem is motivated by and generalizes from its application in security to host-level advanced persistent threat (APT) detection. We propose StreamSpot, a clustering based anomaly detection approach that addresses challenges in two key fronts: (1) heterogeneity, and (2) streaming nature. We introduce a new similarity function for heterogeneous graphs that compares two graphs based on their relative frequency of local substructures, represented as short strings. This function lends itself to a vector representation of a graph, which is (a) fast to compute, and (b) amenable to a sketched version with bounded size that preserves similarity.

StreamSpot exhibits desirable properties that a streaming application requires—it is (i) fully-streaming; processing the stream one edge at a time as it arrives, (ii) memory-efficient; requiring constant space for the sketches and the clustering, (iii) fast; taking constant time to update the graph sketches and the cluster summaries that can process over 100K edges per second, and (iv) online; scoring and flagging anomalies in real time. Experiments on datasets containing simulated system-call flow graphs from normal browser activity and various attack scenarios (ground truth) show that StreamSpot is high-performance; achieving above 95% detection accuracy with small delay, as well as competitive time and memory usage.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: