Structural Neighborhood based Classification of Nodes in a Network
published: Sept. 25, 2016, recorded: August 2016, views: 1344
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
Classification of entities based on the underlying network structure is an important problem. Networks encountered in practice are sparse and have many missing and noisy links. Statistical learning techniques have been used in intra-network classification; however, they typically exploit only the local neighborhood, so may not perform well. In this paper, we propose a novel structural neighborhood-based classifier learning using a random walk. For classifying a node, we take a random walk from the node and make a decision based on how nodes in the respective kth-level neighborhood are labeled. We observe that random walks of short length are helpful in classification. Emphasizing role of longer random walks may cause the underlying Markov chain to converge to a stationary distribution. Considering this, we take a lazy random walk based approach with variable termination probability for each node, based on the node’s structural properties including its degree. Our experimental study on real world datasets demonstrates the superiority of the proposed approach over the existing state-of-the-art approaches.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: