FINAL: Fast Attributed Network Alignment
published: Sept. 25, 2016, recorded: August 2016, views: 1358
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
Multiple networks naturally appear in numerous high-impact applications. Network alignment (i.e., finding the node correspondence across different networks) is often the very first step for many data mining tasks. Most, if not all, of the existing alignment methods are solely based on the topology of the underlying networks. Nonetheless, many real networks often have rich at-tribute information on nodes and/or edges. In this paper, we propose a family of algorithms (FINAL) to align attributed networks. The key idea is to leverage the node/edge attribute information to guide (topology-based) alignment process. We formulate this problem from an optimization perspective based on the alignment consistency principle, and develop effective and scalable algorithms to solve it. Our experiments on real networks show that (1) by leveraging the attribute information, our algorithms can significantly improve the alignment accuracy (i.e., up to a 30% improvement over the existing methods); (2) compared with the exact solution, our proposed fast alignment algorithm leads to a more than 10× speed-up, while preserving a 95% ac-curacy; and (3) our on-query alignment method scales linearly, with an around 90% ranking accuracy compared with our exact full alignment method and a near real-time response time.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: