Profit Maximization for Online Advertising Demand-Side Platform

author: Paul Grigas, Industrial Engineering and Operations Research Department, UC Berkeley
published: Dec. 1, 2017,   recorded: August 2017,   views: 5
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

We develop an optimization model and corresponding algorithm for the management of a demand-side platform (DSP), whereby the DSP aims to maximize its own profit while acquiring valuable impressions for its advertiser clients. We formulate the problem of profit maximization for a DSP interacting with ad exchanges in a real-time bidding environment in a cost-per-click/cost-per-action pricing model. Our proposed formulation leads to a nonconvex optimization problem due to the joint optimization over both impression allocation and bid price decisions. We use Lagrangian relaxation to develop a tractable convex dual problem, which, due to the properties of second-price auctions, may be solved efficiently with subgradient methods. We propose a two-phase solution procedure, whereby in the first phase we solve the convex dual problem using a subgradient algorithm, and in the second phase we use the previously computed dual solution to set bid prices and then solve a linear optimization problem to obtain the allocation probability variables. On several synthetic examples, we demonstrate that our proposed solution approach leads to superior performance over a baseline method that is used in practice.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: