Traffic sensor health monitoring using spatiotemporal graphical modeling

author: Soumik Sarkar, Department of Computer Science, Iowa State University
published: Dec. 1, 2017,   recorded: August 2017,   views: 10
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Accurate traffic sensor data is essential for traffic operation management systems and acquisition of real-time traffic surveillance data depends heavily on the reliability of the traffic sensors (e.g., wide range detector, automatic traffic recorder). Therefore, detecting the health status of the sensors in a traffic sensor network is critical for the departments of transportation as well as other public and private entities, especially in the circumstances where real-time decision is required. With the purpose of efficiently determining the sensor health status and identifying the failed sensor(s) in a timely manner, this paper proposes a graphical modeling approach called spatiotemporal pattern network (STPN). Traffic speed and volume measurement sensors are used in this paper to formulate and analyze the proposed sensor health monitoring system and historical time-series data from a network of traffic sensors on the Interstate 35 (I-35) within the state of Iowa is used for validation. Based on the validation results, we demonstrate that the proposed approach can: (i) extract spatiotemporal dependencies among the different sensors which leads to an efficient graphical representation of the sensor network in the information space, and (ii) distinguish and quantify a sensor issue by leveraging the extracted spatiotemporal relationship of the candidate sensor(s) to the other sensors in the network.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: