High order Proximity Preserving Information Network Hashing

author: Defu Lian, University of Science and Technology of China
published: Nov. 23, 2018,   recorded: August 2018,   views: 461
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Information network embedding is an effective way for efficient graph analytics. However, it still faces with computational challenges in problems such as link prediction and node recommendation, particularly with increasing scale of networks. Hashing is a promising approach for accelerating these problems by orders of magnitude. However, no prior studies have been focused on seeking binary codes for information networks to preserve high-order proximity. Since matrix factorization (MF) unifies and outperforms several well-known embedding methods with high-order proximity preserved, we propose a MF-based Information Network Hashing (INH-MF) algorithm, to learn binary codes which can preserve high-order proximity. We also suggest Hamming subspace learning, which only updates partial binary codes each time, to scale up INHMF. We finally evaluate INH-MF on four real-world information network datasets with respect to the tasks of node classification and node recommendation. The results demonstrate that INH-MF can perform significantly better than competing learning to hash baselines in both tasks, and surprisingly outperforms network embedding methods, including DeepWalk, LINE and NetMF, in the task of node recommendation. The source code of INH-MF is available online1.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: