Deep Uncertainty Quantification: A Machine Learning Approach for Weather Forecasting

author: Bin Wang, University of Technology, Sydney
published: March 2, 2020,   recorded: August 2019,   views: 2

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography


Weather forecasting is usually solved through numerical weather prediction (NWP), which can sometimes lead to unsatisfactory performance due to inappropriate setting of the initial states. In this paper, we design a data-driven method augmented by an effective information fusion mechanism to learn from historical data that incorporates prior knowledge from NWP. We cast the weather forecasting problem as an end-to-end deep learning problem and solve it by proposing a novel negative log-likelihood error (NLE) loss function. A notable advantage of our proposed method is that it simultaneously implements single-value forecasting and uncertainty quantification, which we refer to as deep uncertainty quantification (DUQ). Efficient deep ensemble strategies are also explored to further improve performance. This new approach was evaluated on a public dataset collected from weather stations in Beijing, China. Experimental results demonstrate that the proposed NLE loss significantly improves generalization compared to mean squared error (MSE) loss and mean absolute error (MAE) loss. Compared with NWP, this approach significantly improves accuracy by 47.76%, which is a state-of-the-art result on this benchmark dataset.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: