Aligraph: A Comprehensive Graph Neural Network Platform

author: Hongxia Yang, Alibaba Group
author: Hongxia Yang, Yahoo! Inc.
published: March 2, 2020,   recorded: August 2019,   views: 23
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

An increasing number of machine learning tasks require dealing with large graph datasets, which capture rich and complex relationship among potentially billions of elements. Graph Neural Network (GNN) becomes an effective way to address the graph learning problem by converting the graph data into a low dimensional space while keeping both the structural and property information to the maximum extent and constructing a neural network for training and referencing. However, it is challenging to provide an efficient graph storage and computation capabilities to facilitate GNN training and enable development of new GNN algorithms. In this paper, we present a comprehensive graph neural network platform, namelyAliGraph, which consists of distributed graph storage, optimized sampling operators and runtime to efficiently support not only existing popular GNNs but also a series of in-house developed ones for different scenarios. The system is currently deployed at Alibaba to support a variety of business scenarios, including product recommendation and personalized search at Alibaba’s E-Commerce platform. By conducting extensive experiments on a real-world dataset with 492.90 million vertices, 6.82 billion edges and rich attributes, AliGraph performs an order of magnitude faster in terms of graph building (5 minutes vs hours reported from the state-of-the-art PowerGraph platform). At training, AliGraph runs 40%-50% faster with the novel caching strategy and demonstrates around 12 times speed up with the improved runtime. In addition, our in-house developed GNN models all showcase their statistically significant superiorities in terms of both effectiveness and efficiency (e.g., 4.12%–17.19% lift by F1 scores).

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: