## NIPS Workshop on Learning to Compare Examples, Whistler 2006

The identification of an effective function to compare examples is essential to several machine learning problems. For instance, retrieval systems entirely depend on such a function to rank the documents with respect to their estimated similarity to the submitted query. Another example is kernel-based algorithms which heavily rely on the choice of an appropriate kernel function. In most cases, the choice of the comparison function (also called, depending on the context and its mathematical properties, distance metric, similarity measure, kernel function or matching measure) is done a-priori, relying on some knowledge/assumptions specific to the task. An alternative to this a-priori selection is to learn a suitable function relying on a set of examples and some of its desired properties. This workshop is aimed at bringing together researchers interested in such a task.

## Invited talks | ||||

## Introduction | ||||

## Lectures | ||||

## Debate | ||||

Carlo, December 15, 2023 at 6:33 p.m.:When merging these sources, a significant percentage of missing values result from inconsistent indicators and cities among the various data sources. See: https://concretedrivewayperth.com.au