Do-It-Yourself Biology

author: Natalie Kuldell, Department of Biological Engineering, Massachusetts Institute of Technology, MIT
author: Reshma Shetty, Ginkgo BioWorks
published: Oct. 10, 2011,   recorded: January 2009,   views: 6506
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Inspired by the vast potential of bioengineering, ordinary people are seeking their inner Frankenstein -- doctor, not monster. Two speakers who know their way around Petri dish and beaker discuss the possibilities and pitfalls of do-it-yourself biology with an MIT Museum crowd.

Showing ads from a 1980 Omni magazine, Natalie Kuldell reflects on the vast changes in computer engineering in the past few decades – from 20-lb PCs to laptops and handhelds. In contrast, she laments, genetic engineering today still resembles in large part its 1980 antecedents -- inserting bits of DNA into organisms like E. coli. She avers that computer engineering made such leaps because its technology was widely available to amateurs, who helped drive many advances. Biotech hasn’t moved as fast, and won’t, believes a nascent do-it-yourself (DIY) community, until basic components of biology become accessible to a larger population.

Synthetic biology aims to make new biological forms easier to engineer. Kuldell complains that “much of my time is spent doing things to do the experiments I need to do. It would be terrific not to have to build things in advance.” But building biological components and streamlining processes is difficult in biology, because biosystems are complex, and unpredictable. Can amateurs working with “Tupperware, thermometers and genetic engineering in the kitchen” discover “something remarkable doing their biology at home?”

Reshma Shetty thinks engineered organisms can do more than sense toxic metals in the environment or determine whether seawater is contaminated. She can “imagine a DIY bioengineer…doing something more fantastical, ambitious…. What about growing your own house?” Shetty describes a home experiment that can make bacteria smell like bananas. This is a small feat, but to achieve something significant, a real contribution to science, Shetty says DIY biologists need bio-engineered friendly organisms that will serve as common models, safe, easy to grow “and fun to use.” Candidates include moss, an easy to grow bacterium called Acinetobacter, and the salt-loving Halobacterium. By giving people the right tools, “they can build something fun and creative others can appreciate.”

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: