Bioengineering at MIT: Building Bridges Between the Sciences, Engineering and Health Care (Part One)

author: Douglas Lauffenburger, Center for Future Civic Media, Massachusetts Institute of Technology, MIT
author: Linda G. Griffith, Center for Future Civic Media, Massachusetts Institute of Technology, MIT
author: Angela Belcher, Department of Materials Science and Engineering (DMSE), Massachusetts Institute of Technology, MIT
published: July 29, 2013,   recorded: June 2005,   views: 2892
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

In Doug Lauffenburger’s view, MIT’s new bioengineering degree program is not merely justified, it is essential. Revolutionary changes in biological sciences—specifically, in molecular biology and genomics—have given scientists the means to understand and control both the building blocks and larger systems of living things. Now, says Lauffenburger, the “operation of biological functions needs to be understood in terms of biomolecular machines.” But the hard part, he says, is “predicting what happens when you manipulate them. It’s almost trial and error. That’s where engineering comes in.”

Linda Griffith provides one paradigm for such research. She is designing a scaffold on which to grow human cells for use in tissue implants. Using a “computer controlled process that builds complex 3D objects up from scratch,” Griffith creates a device that mimics the complex structures of joints and other body parts – suited for joint repair, or bone regeneration. Her research might someday produce organs for transplant. But Griffith’s grander goal involves “putting surgeons out of business,” by eliminating transplants altogether. She’s building a “liver on a chip” – growing liver cells on a tiny wafer with the architecture and molecular properties of actual liver cells. This biomechanical product can be used to test drug toxicity and gene therapies, and perhaps someday to model and block the growth of cancers.

Angela Belcher models her bioengineered devices on some of nature’s most ingenious products, such as the incredibly strong and exquisitely structured abalone shell. She designs on a nanoscale, getting viruses and antibodies to work with inorganic materials. “How far can you push organisms?” Belcher wonders. To date, she’s taught a nontoxic virus to recognize a specific metal used in a semiconductor wafer. Someday viruses could detect atomic defects in electronics. Belcher also describes virus scaffolds for growing semiconductor wires, and for generating lightweight batteries woven into soldier’s uniforms. She’s even looking into ways of spinning viruses, as spiders spin silk, for generating optical materials.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: