Learning on Structured Data

author: David McAllester, Toyota Technological Institute at Chicago
published: Feb. 25, 2007,   recorded: May 2005,   views: 3942

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

 Watch videos:   (click on thumbnail to launch)

Watch Part 1
Part 1 1:04:02
Watch Part 2
Part 2 40:34


Discriminative learning framework is one of the very successful fields of machine learning. The methods of this paradigm, such as Boosting, and Support Vector Machines have significantly advanced the state-of-the-art for classification by improving the accuracy and by increasing the applicability of machine learning methods. One of the key benefits of these methods is their ability to learn efficiently in high dimensional feature spaces, either by the use of implicit data representations via kernels or by explicit feature induction. However, traditionally these methods do not exploit dependencies between class labels where more than one label is predicted. Many real-world classification problems involve sequential, temporal or structural dependencies between multiple labels. We will investigate recent research on generalizing discriminative methods to learning in structured domains. These techniques combine the efficiency of dynamic programming methods with the advantages of the state-of-the-art learning methods.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 David, March 10, 2007 at 6:36 p.m.:

Great lecture.
But can someone post up the slides? It's hard to follow entirely without the slides.

Write your own review or comment:

make sure you have javascript enabled or clear this field: