Bootstrapping from Game Tree Search

author: Joel Veness, NICTA, Australia's ICT Research Centre of Excellence
published: Jan. 19, 2010,   recorded: December 2009,   views: 4399
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

In this paper we introduce a new algorithm for updating the parameters of a heuristic evaluation function, by updating the heuristic towards the values computed by an alpha-beta search. Our algorithm differs from previous approaches to learning from search, such as Samuel's checkers player and the TD-Leaf algorithm, in two key ways. First, we update all nodes in the search tree, rather than a single node. Second, we use the outcome of a deep search, instead of the outcome of a subsequent search, as the training signal for the evaluation function. We implemented our algorithm in a chess program Meep, using a linear heuristic function. After initialising its weight vector to small random values, Meep was able to learn high quality weights from self-play alone. When tested online against human opponents, Meep played at a master level, the best performance of any chess program with a heuristic learned entirely from self-play.

See Also:

Download slides icon Download slides: nips09_veness_bfg_01.pdf (263.4 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: