Deciphering subsampled data: adaptive compressive sampling as a principle of brain communication

author: Guy Isely, Helen Wills Neuroscience Institute, UC Berkeley
published: March 25, 2011,   recorded: December 2010,   views: 3068
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

A new algorithm is proposed for a) unsupervised learning of sparse representations from subsampled measurements and b) estimating the parameters required for linearly reconstructing signals from the sparse codes. We verify that the new algorithm performs efficient data compression on par with the recent method of compressive sampling. Further, we demonstrate that the algorithm performs robustly when stacked in several stages or when applied in undercomplete or overcomplete situations. The new algorithm can explain how neural populations in the brain that receive subsampled input through fiber bottlenecks are able to form coherent response properties.

See Also:

Download slides icon Download slides: nips2010_isely_dsd_01.pdf (592.3 KB)

Download article icon Download article: nips2010_1099.pdf (357.9 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: