Multi-Way, Multi-View Learning
published: Jan. 19, 2010, recorded: December 2009, views: 4756
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
We extend multi-way, multivariate ANOVA-type analysis to cases where one covariate is the view, with features of each view coming from different, high- dimensional domains. The different views are assumed to be connected by having paired samples; this is common in our main application, biological experiments integrating data from different sources. Such experiments typically also include a controlled multi-way experimental setup where disease status, medical treatment groups, gender and time of the measurement are usual covariates. We introduce a multi-way latent variable model for this new task, by extending the generative model of Bayesian canonical correlation analysis (CCA) both to take multi-way covariate information into account as population priors, and by reducing the dimensionality by an integrated factor analysis that assumes the features to come in correlated groups.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: