PAC-Bayesian Learning and Domain Adaptation

author: Pascal Germain, GRAAL, Département d'informatique et de génie logiciel, Université Laval
published: Jan. 16, 2013,   recorded: December 2012,   views: 2979
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

In machine learning, Domain Adaptation (DA) arises when the distribution generating the test (target) data differs from the one generating the learning (source) data. It is well known that DA is an hard task even under strong assumptions, among which the covariate-shift where the source and target distributions diverge only in their marginals, i.e. they have the same labeling function. Another popular approach is to consider an hypothesis class that moves closer the two distributions while implying a low-error for both tasks. This is a VC-dim approach that restricts the complexity of an hypothesis class in order to get good generalization. Instead, we propose a PAC-Bayesian approach that seeks for suitable weights to be given to each hypothesis in order to build a majority vote. We prove a new DA bound in the PAC-Bayesian context. This leads us to design the first DA-PAC-Bayesian algorithm based on the minimization of the proposed bound. Doing so, we seek for a ρ-weighted majority vote that takes into account a trade-off between three quantities. The first two quantities being, as usual in the PAC-Bayesian approach, (a) the complexity of the majority vote (measured by a Kullback-Leibler divergence) and (b) its empirical risk (measured by the ρ-average errors on the source sample). The third quantity is (c) the capacity of the majority vote to distinguish some structural difference between the source and target samples.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: