On the Complexity of Bandit and Derivative-Free Stochastic Convex Optimization
published: Jan. 16, 2013, recorded: December 2012, views: 2790
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
The problem of stochastic convex optimization with bandit feedback (in the learning community) or without knowledge of gradients (in the optimization community) has received much attention in recent years, in the form of algorithms and performance upper bounds. However, much less is known about the inherent complexity of these problems, and there are few lower bounds in the literature, especially for nonlinear functions. In this paper, we investigate the attainable error/regret in the bandit and derivative-free settings, as a function of the dimension d and the available number of queries T. We provide a precise characterization of the attainable performance for stronglyconvex and smooth functions, which also imply a non-trivial lower bound for more general problems. Moreover, we prove that in both the bandit and derivative-free setting, the required number of queries must scale at least quadratically with the dimension. Finally, we show that on the natural class of quadratic functions, it is possible to obtain a “fast” O(1=T ) error rate in terms of T, under mild assumptions, even without having access to gradients. To the best of our knowledge, this is the first such rate in a derivative-free stochastic setting, and holds despite previous results which seem to imply the contrary.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: