Analysis of the copula correlation matrix for meta-elliptical distributions

author: Yue Zhao, Department of Statistical Science, Cornell University
published: Oct. 6, 2014,   recorded: December 2013,   views: 49

See Also:

Download slides icon Download slides: nipsworkshops2013_zhao_matrix_01.pdf (557.4┬áKB)

Help icon Streaming Video Help

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography


We study the copula correlation matrix $\Sigma$ for elliptical copulas. In this context, the correlations are connected to Kendall's tau through a sine function transformation. Hence, a natural estimate for $\Sigma$ is the plug-in estimator $\widehat\Sigma$ with Kendall's tau statistics. In this talk, we first obtain a sharp bound on the operator norm of $\widehat \Sigma - \Sigma$. Then, we study a factor model for $\Sigma$, for which we propose a refined estimator $\widetilde\Sigma$ by fitting a low-rank matrix plus a diagonal matrix to $\widehat\Sigma$ using least squares with a nuclear norm penalty on the low-rank matrix. The bound on the operator norm $\widehat \Sigma - \Sigma$ serves to scale the penalty term, and we obtain finite sample oracle inequalities for $\widetilde\Sigma$. If time permits, we may also present two estimators based on suitably truncated eigen-decompositions of $\widehat\Sigma$, one for an elementary factor model and the other for the regime where $d$ is proportional to the sample size. (with Marten Wegkamp)

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: