Kernel Representations and Kernel Density Estimation

author: Peter J. Bickel, Department of Statistics, UC Berkeley
published: Dec. 18, 2008,   recorded: December 2008,   views: 981
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

There has been a great deal of attention in recent times particularly in machine learning to representation of multivariate data points x by K(x, ·) where K is positive and symmetric and thus induces a reproducing kernel Hilbert space.The idea is then to use the matrix

K(Xi , Xj )as a substitute for the empirical covariance matrix of a sample X1 , . . . , Xn for PCA

and other inference.(Jordan and Fukumizu(2006) for instance. Nadler et. al(2006) connected this approach to one based on random walks and diffusion limits and indicated a connection to kernel density estimation.By making at least a formal connection to a multiplication operator on a function space we make further connection and show how clustering results of Beylkin ,Shih and Yu (2008) which apparently differ from Nadler et al. can be explained.

See Also:

Download slides icon Download slides: sip08_bickel_krakd_01.pdf (697.0 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: