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Regularized Risk Minimization

Many machine learning problems can be cast in the form,

minimize
w

J(w) := λΩ(w) + R(w)

where R(w) :=
1

m

m∑
i=1

l(xi , yi ,w)

w : weight vector

{(xi , yi )}m
i=1: training data

l(x , y ,w): convex and non-negative loss function

Ω(w): convex and non-negative regularizer

λ: regularization constant

Choon Hui Teo Scalable Modular Solver for Regularised Risk Minimization



Examples

Method (obj. fn.) λΩ(w) + R(w)

linear SVMs λ
2 ‖w‖

2
2 + 1

m

∑m
i=1 max {0, 1− yi 〈w , xi 〉}

`1 log. reg. λ ‖w‖1 + 1
m

∑m
i=1 log (1 + exp (−yi 〈w , xi 〉))

ε-insensitive reg. λ
2 ‖w‖

2
2 + 1

m

∑m
i=1 max {0, |yi − 〈w , xi 〉 | − ε}
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How to solve these problems?

1 Newton and quasi-Newton Methods

When the (convex) function is differentiable

2 Cutting Plane based Methods

When the (convex) function is continuous
Meaningful termination criterion
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Cutting Plane Methods (CPM)

Given: Convex (and non-negative) function R(w)

Idea: First order Taylor approximation lower-bounds R(w)
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The convex function...

Red curve: convex non-negative function
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The lower bound...

Black dashed line: 1st-order Taylor approx. at w = 0

Green dot: minimum of the lower bound

Blue dashed line: current approximation gap ε0
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Cutting Plane Methods (CPM)

Given: Convex, non-negative convex function R(w)

Idea: First order Taylor approximation lower-bounds R(w)

Fact: More approximations −→ better lower bound
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The lower bound is better...
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The lower bound is better and better...
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The lower bound is better and better and better...
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Cutting Plane Methods (CPM)

Given: Convex, non-negative convex function R(w)

Idea: First order Taylor approximation lower-bounds R(w)

Fact: More approximations −→ better lower bound

Summary: Iteratively improve the piecewise-linear lower bound
and minimize it

min
w ,ξ

ξ

s.t. 〈∂wR(wi ),w − wi 〉+ R(wi ) ≤ ξ ∀i

Note: Take any subgradient when R(wi ) is not differentiable
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Bundle Methods (BM)

Is basically CPM stabilized with (Moreau-Yosida) regularizer, i.e.,

min
w ,ξ

λ

2
‖w − w̄‖2

2 + ξ

s.t. 〈∂wR(wi ),w − wi 〉+ R(wi ) ≤ ξ ∀i ,

where w̄ is the current minimizer.

Point: Prevent new minimizer from moving “too” far away from
the current
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A Variant of BM

But, our (machine learning) problem comes with a regularizer Ω(w)

min
w ,ξ

λΩ(w) + ξ

s.t. 〈∂wR(wi ),w − wi 〉+ R(wi ) ≤ ξ ∀i ,

Examples of Ω(w):

Ω(w) = ‖w‖1 −→ Linear Program

Ω(w) = ‖w‖2
2 −→ Quadratic Program
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Rate of Convergence

Question

How fast does the approximate minimizer w̄ approach actual
minimizer w ∗?

Answer

O(1
ε
), where ε := R(w ∗)− R(w̄).

ε is the meaningful termination criterion.
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Architecture of BMRM

For serial computation:

Data module manages dataset

Loss module computes loss and (sub)gradient

Solver module solves optimization problem (Ω(w)-specific)

Modules are loosely coupled
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Architecture of BMRM (cont’d)

For parallel/distributed computation:

For decomposable loss function

Split dataset into sub-datasets

Each node computes loss w.r.t. its sub-dataset

Multiplexer aggregates the loss and (sub)gradients and
broadcast new w
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Experiment 1: Training time comparison

Task: Binary classification
Solvers:

Our method BMRM (in particular, `2 norm and soft-margin loss)
SVMPERF [Joachims, KDD’06]

Datasets:
kdd99 (m=4898431, dim.=127, den.=12.86%)
reuters-c11 (m=23149, dim.=47236, den.=0.16%)

Setting:
ε = 1e-5
λ ∈ {1,0.3,0.1,...,3e-6}
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BMRM is comparable to SVMPERF

Figure: log-log plot of linear SVM training time vs. regularization
constant λ on kdd99.
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BMRM is comparable to SVMPERF (cont’d)

Figure: log-log plot of linear SVM training time vs. regularization
constant λ on reuters-c11.
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Experiment 2: Convergence rate

Task: Binary classification

Solvers: BMRM

Datasets: kdd99 and reuters-c11

Setting: ε = 1e-5, λ = 3e-6
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BMRM converged under O(1/ε) steps

Figure: semilog-y plot of approximation gap ε vs. iterations
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BMRM converged under O(1/ε) steps (cont’d)

Figure: semilog-y plot of approximation gap ε vs. iterations
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Experiment 3: Parallelization of BMRM

Task: Ranking

Methods:

Normalized Discounted Cumulative Gain (NDCG)
Ordinal regression

Dataset: MSN

ε = 1e-5

λ ∈ {10, 100}
Number of computers n ∈ {1, 2, 4, . . . , 512}
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BMRM runtime ∝ 1/n

Figure: Plot of NDCG training time vs. the inverse number of computers
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BMRM runtime ∝ 1/n (cont’d)

Figure: Plot of Ordinal regression training time vs. the inverse number of
computers
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Conclusion

Unconstrained formulation leads to easy,
modular and scalable solver design

“Job specialization”: optimization, loss,
parallelization scheme
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Thank you!
(Poster 23, Tuesday 14th August 07)
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