NIPS 2015 Workshop: Modelling and Inference for Dynamics on Complex Interaction Networks

Inference of Neural Circuit Connectivity from High-dimensional Activity Recording Data: A Survey

Kenji Doya, Ildefons Magrans de Abril, Jun-ichiro Yoshimoto doya@oistjp Neural Computation Unit Okinawa Institute of Science and Technology

Brain/MINDS Program (2014~2023)

Structural/Functional maps of marmoset brain

- RIKEN + 22 labs in Japan
- S billion yen (~\$30M)/year
- OIST: data-driven model building

brainminds.jp

Press Release In vivo two-photon imaging of dendritic spines in marmoset neocortex

Introduction

Why Neural Circuit Inference?

- To uncover dynamics/algorithms behind neural representation
 - whole brain: functional MRI, MEG, EEG,...
 - Iocal circuit: multi-electrode, optical recording
- Anatomical identification of all connections is costly/impractical/imprecise
- This Survey: Local Circuit Inference
- Data processing pipeline
 - Biophysical and technical challenges

Data Processing Pipeline

Model-free Approaches

- Descriptive statistics
 - correlation $\rho_{X,Y} = \operatorname{corr}$
 - cross correlation
 - coincidence index

$$\operatorname{prr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_x \sigma_y} = \frac{E[(X-\mu_x)(Y-\mu_y)]}{\sigma_x \sigma_y}$$
$$\rho_{Y\to X}(\tau) = \frac{E[(Y_t-\mu_y)(X_{t+\tau}-\mu_x)]}{\sigma_x \sigma_y}$$
$$CI = \frac{\sum_{d=0}^r \rho_{X,Y}(d)}{\sum_{d=0}^T \rho_{X,Y}(d)}$$

partial correlation

$$PC_{i,j} = \frac{\sum_{ij}^{-1}}{\sqrt{\sum_{ii}^{-1} \sum_{jj}^{-1}}}$$

Information theoretic methods

• transfer entropy $TE_{Y \to X} = \sum_{x_{t+1}, x_t^k, y_t^l} P(x_{t+1}, x_t^k, y_t^l) \log_2 \frac{P(x_{t+1} | x_t^k, y_t^l)}{P(x_{t+1} | x_t^k)}$

information gain $IG_{Y \to X} = G(x_{t+1}) - G(x_{t+1}|y_t)$

Deep Learning Approach

Integrated architecture for spike and connection inference

- Convolutional neural network
 - identify relevant events in fluorescence time series
 - with temporal tolerance

Recurrent Neural Network

- model temporal sequences of relevant events
- Dynamically programmed layer
 - compute connection
 probability

Activation of in

(Veeriah et al. 2015)

Model-based Approaches

Generative models

• auto-regressive (AR) $x_i(t) = A_{i0} + \sum_{j=1}^{r} \sum_{k=1}^{n} A_{ij}(k) x_j(t-k) + \epsilon_i(t),$

• generalized linear (GLM) $x_i(t) \sim \operatorname{Ber}(\cdot|\rho_i(t))$

 $\rho_i(t) \equiv \phi \left(A_{i0} + \sum_{j=1}^{P} \sum_{k=1}^{K} A_{ij}(k) x_j(t-k) \right)$ e.g. stochastic integrate & fire

Inference

- maximum likelihood $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta|D)$
- Bayesian
 regularizers

$$\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta|D)$$
$$\theta^* = \underset{\theta}{\operatorname{argmin}} \{J(\theta|D) + \lambda \mathcal{R}(\theta)\}$$
$$\mathcal{R}(\theta) = \sum_{\theta} \theta_r^2 \quad \mathcal{R}(\theta) = \sum_{\tau} |\theta_r|$$

r

Neural and Ca²⁺ Dynamics Model

(Mishchenko et al. 2011; Fletcher et al 2014)

- **Generative model** $\tilde{v}_i^{k+1} = (1 \alpha_{IF})v_i^k + \sum_{i=1}^{N} W_{ij}s_j^{k-\delta} + d_{v_i}^k$
 - stochastic IF $(v_i^{k+1}, s_i^{k+1}) = \begin{cases} (\tilde{v}_i^k, 0) & \text{if } v_i^k < \mu \\ (0, 1) & \text{if } \tilde{v}_i^k \ge \mu \end{cases}$
 - calcium dynamics $z_i^{k+1} = (1 \alpha_{CA,i})z_i^k + s_i^k$
 - fluorescence $y_i^k = a_{CA,i} z_i^k + b_{CA,i} + d_{y_i}^k$

Inference $\widehat{\theta} = \arg \max_{\rho} L(\mathbf{y}|\theta) + \lambda \|\mathbf{W}\|_1$

- parameters $\theta = \{ \mathbf{W}, \tau_{IF}, \tau_{CA}, \alpha_{IF}, b_{IF,i}, \alpha_{CA}, a_{CA,i}, b_{CA,i}, i = 1, \dots, N \}$
- hidden variables $\mathbf{x} = {\mathbf{v}, \mathbf{z}, \mathbf{q}, \mathbf{s}}$
- E-step: $P(\mathbf{x}|\mathbf{y}, \hat{\theta}^{\ell})$

M-step:

$$\widehat{\theta}^{\ell+1} = \arg\min_{\boldsymbol{\theta}} \mathbb{E} \left[L(\mathbf{x}, \mathbf{y} | \boldsymbol{\theta}) | \widehat{\theta}^{\ell} \right] + \phi(\boldsymbol{\theta})$$

Biophysical Challenges

Apparent/invisible connection:

- common inputs cause apparent connections
- connection is invisible without neural activity
- **Directionality**: with limited temporal resolution
- Cellular dynamics: post-spike adaptation, post-inhibitory rebound, etc.
- Synaptic dynamics: short-term adaptation, long-term plasticity, etc.
- Non-stationarity: network can shift between multiple states, such as synchronized bursting

Technical Challenges

Noise: electric noise, motion artifacts, etc. **Time/space resolution**: calcium image ~100ms **Hidden neurons**: e.g., off the focal plane **External inputs**: e.g. spontaneous action **Prior knowledge**: sparseness, topography, etc. **Accuracy**: existence, sign, magnitude, time delay **Scalability**: thousands of neurons, millions of potential connections...

Challenges and Solutions

	Data Acquisition	Pre- processing	Connection Inference	Post- inference	Validation
Apparent connection			c1 d12 e12	a3	
Directionality			b123 <mark>c1 d12</mark> e12	a2	
Cellular dynamics			<mark>c1 d12</mark> e12		
Synaptic dynamics			d12 e12		
Non-stationarity		a123 b2	c1		
Noise		a123 b1 c1	<mark>c1 d12</mark> e12		
Time/space resolution			<mark>c1</mark> e12		
Hidden neurons					
External inputs					
Prior knowledge			a2 d12 e12		
Accuracy			a23 c1 d12 e12	a3	d1
Scalability			a23		

References

Model-free

- Descriptive statistics
- a1: Cohen & Kohn, Nat Neurosci, 2011
- a2: Sutera et al., ECML, 2014
- a3: Magrans & Nowe, ECML, 2014
- Information theoretic
- b1: Stetter et al., PLoS Comp Bio, 2012
- b2: Garofalo et al., PLoS One, 2009
- b3: Ito et al., PLos One, 2011
- Others
- cl: Veeriah et al., SIGKDD, 2015

Model-based

- Generalized linear models
- d1: Pillow et al., Nature, 2008
- d2: Stevenson et al., IEEE TNSR, 2009
- Spike & calcium dynamics
- e1: Mishchenko et al., Ann Appl Stat, 2011
- e2: Fletcher et al., NIPS 2014

Conclusion

Model-free methods

- less assumptions, less parameters
- cannot reproduce dynamics
- Model-based methods
 - needs hyper parameter tuning
 - reproduce dynamics for validation/analysis
- Limitations and opportunities
 - external inputs and hidden neurons
 - non-stationarity

cellular/synaptic diversity and scalability