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２．革新脳の達成目標
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①高解像度・広領域・深部観察・高時間分解能を達成する
神経回路構造・機能解析技術の開発

○可視化プローブの開発
○組織操作技術（透明化等）の開発
○広範囲観察のための顕微鏡技術の開発
○超高密度電極アレイの開発
○ヒト脳イメージングのための新規MRI技術の開発

２．革新脳の達成目標

Ｂ．神経回路マップ作成のための革新的技術開発
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Introduction
Why Neural Circuit Inference? 
 To uncover dynamics/algorithms behind neural 
representation 

 whole brain: functional MRI, MEG, EEG,… 

  local circuit: multi-electrode, optical recording 
 Anatomical identification of all connections is 
costly/impractical/imprecise 

This Survey: Local Circuit Inference 

 Data processing pipeline
 Biophysical and technical challenges  
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Data Processing Pipeline

Pre-‐
processing	  

Network	  
inference	  

Post-‐inference	   Valida3on	  Data	  
acquisi3on	  

Model-‐free:	  
•  Correla3on	  
•  Transfer	  entropy	  	  
•  Deep	  learning	  
•  …	  

Model-‐based:	  
•  Generalized	  linear	  

models	  
•  Max.	  entropy	  
•  Hawkes	  processes	  
•  …	  

	  

Calcium	  imaging	  
•  1000s	  of	  

neurons	  
•  Good	  3me	  

resolu3on	  
•  Complex	  pre-‐

processing	  

Mul9ple	  electrodes	  
•  Very	  good	  3me	  

resolu3on	  
•  Few	  100s	  
•  Mixed	  signals	  
•  Highly	  invasive	  

Calcium	  imaging	  
•  Neuron	  image	  

segmenta3on	  
•  Fluorescence	  

trace	  extrac3on	  
•  Spike	  train	  

inference	  

Mul9ple	  electrodes	  
•  Sor3ng	  required	  

•  Confounded	  
effects	  

•  Matrixes	  
combina3on	  

•  Edge	  orienta3on	  
	  

Simulated	  vs	  real	  
data	  	  
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Model-free Approaches
 Descriptive statistics 
 correlation 

 cross correlation 

 coincidence index 

 partial correlation 

 Information theoretic methods 

  transfer entropy 

  information gain 
6

2. Cross-correlation (CC): under the general assumptions of this section,

it indicates the strength of the delayed linear relationship between two

neurons. The formal definition is:

ρY→X(τ) =
E[(Yt − µy) (Xt+τ − µx)]

σxσy
(3)

The parameter τ defines the delay of neuron X with respect to Y .

We should also note that the additional parameter τ should be opti-

mized for each connection. Then, assuming that our instrumentation

sampling time is equal or smaller than the average synaptic delay, CC

should be able to identify the causal direction (E.g. sampling frequen-

cies of 10Khz are feasible with Micro-Electrode Arrays, section 2.1).

A related measure is the Coincidence Index (CI). It is used to combine

several CC computed at different τs. It is defined as:

CI =

∑r
d=0 ρX,Y (d)∑T
d=0 ρX,Y (d)

(4)

where r is a short interval called coincidence interval and T is a the full

window size. A large CI indicates a more likely connection Shimono and

Beggs (2014). In a comparative study of several model-free methods

applied to network inference of in-vitro cultured cells, CC demonstrated

the second best network reconstruction performance just below transfer

entropy Garofalo et al. (2009). Besides the added capability of being

able to detect effective connections when using appropriate recording

devices, CC has the same limitations than correlation.

3. Partial Correlation (PC): given the general assumptions described in

the beginning of this section, the formal definition of PC between neu-

rons Xi and Xj is:

17

that a neural network with P neurons has generated a P−dimensional time

series of spike trains of length T by iid sampling T times from a multi-

dimensional stationary random variable X = {X1, X2, . . . , XP}.

4.1. Descriptive statistics

These methods aim to extract different summaries from a population

sample. We will present measures able to capture the degree of connection

between two neurons Xi and Xj belonging to the neural network X:

1. Correlation (C): it indicates the strength of the linear relationship be-

tween two random variables that represent two neurons. The most

commonly used correlation variant between two random variables X

and Y is the Pearson correlation coefficient:

ρX,Y = corr(X, Y ) =
cov(X, Y )

σxσy
=

E[(X − µx)(Y − µy)]

σxσy
(2)

When we use C to perform network inference of neuronal micro-circuits,

we are measuring the rate of co-occurring spikes in each neuron pair

Cohen and Kohn (2011) and it is interpreted as the functional connec-

tivity strength. Pearson correlation is the computationally cheapest

method. However, it has a number drawbacks: it is not able to dis-

tinguish direct or effective connections from indirect ones, it does not

indicate the causal direction, it cannot be applied to infer self-loops and

it is not suited to deal with external inputs and multi-scale data. De-

spite its limitations, section 6 presents a winning solutions of the first

Connectomics challenge which uses correlation as a key component of

a more complex method.
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PCi,j =

∑−1
ij√∑−1

ii

∑−1
jj

(5)

such that
∑−1 is the inverse of the covariance matrix of X. The Most

relevant difference with all other methods described in this section is

that it takes into account all neurons to compute a connectivity in-

dicator between each neuron pair. An important property of PC is

that, assuming that PX is normally distributed, then PCi,j is 0 if and

only if Xi and Xj are independent given all the rest. Therefore, CC

is measures the effective connectivity without requiring high frequency

sampling instrumentation as in the case of CC. Finally, besides the

multivariate feature, PC shares the same limitations as C and CC with

the additional computational complexity required to invert the covari-

ance matrix. The first prize solution of the first connectomics challenge,

discussed in section 6, is a good example of how to use PC to perform

network inference Sutera et al. (2014).

4.2. Information theoretic methods

Information theory is a mathematics discipline initiated by Shannon to

characterize the limits of information management including transmission,

compression and processing Shannon (1948). This section presents the ap-

plication of several information theory measures to the inference of neural

micro-circuits.

1. Mutual information (MI): under the general assumptions of this sec-

tion, MI indicates the strength of the non-linear correlation between

two neurons X and Y . The formal definition is:
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3. Transfer Entropy: Transfer entropy (TE)is a bi-variate causal indica-

tor. It assumes that the spike trains from neurons X and Y have been

generated by a discrete time stationary Markov process of order k for

neuron X and order l for neuron Y . The formal definition of TE from

Y to X is:

TEY→X =
∑

xt+1,xk
t ,y

l
t

P (xt+1, x
k
t , y

l
t) log2

P (xt+1|xk
t , y

l
t)

P (xt+1|xk
t )

(8)

where xk
t is the spike train generated by neuron X from time t − k

to time t. TE can be interpreted as the Kullback-Leibler divergence

between the following two distributions P (xt+1|xk
t ) and P (xt+1|xk

t , y
l
t).

The larger the influence of past values of Y to predict the future value

of X, the more divergent will be these two distributions. Interestingly,

TE is the only model-free method that takes into account the spike

train history.

TE is also an asymmetric causal indicator. However, the performance

of TE to discriminate the causal direction and to filter-out direct causal

effects from indirect ones depends to a large extend of having a record-

ing sampling period as short as possible (E.g. Microelectrode arrray

∼ 1ms Shimono and Beggs (2014)). TE is a priori a good method to

detect both excitatory and inhibitory connections because it is able to

measure non-linear relationships Stetter et al. (2012). However, it has

been documented that detecting inhibitory connections is only possible

with a very high firing rate Ito et al. (2011)Shimono and Beggs (2014).

An estimator of TE for binary uni-dimensional spike trains is based on

growing a histogram for each distribution Lizier (2014) with a compu-

20

5. Information gain variants: finally, a less known asymmetric connectiv-

ity measure is Information Gain (IG). Under the general assumptions

of this section, its formal definition is:

IGY→X = G(xt+1)−G(xt+1|yt) (10)

whereG is the Gini Index or entropy. In case of calcium imaging record-

ings, it may be convenient to use the same strategy as with GTE by

using the Y sample from the same time bin yt+1 instead of the previous

one yt. This connectivity indicator was used as one of many indicators

combined by one of the top solutions of the first neural connectomics

challenge Czarnecki and Jozefowicz (2014).

5. Model-based methods

In the model-free methods, we rely only on descriptive statistics of the

data such as the correlation, but do not care about a rule by which the

observed data were generated. In this section, we introduce a class of meth-

ods in which the connectivity is estimated by explicitly modeling the data

generation rule. We refer to them as model-based methods in this paper.

Let x(t) = (x1(t), . . . , xP (t)) be a set of P signals observed at the tth time

point in a discrete time domain, where xi(t) denotes the ith neuron’s activity

at that time. xi(t) may be continuous when the measurement is a raw data

collected from calcium imaging and micro-electrode arrays, or binary when

the data is transformed into a spike train by a spike-sorting algorithm.

The common feature of model-based methods is that xi(t) is assumed to

be a realization sampled from a conditional probability distribution pθ(·|H(t))

23



(Veeriah	  et	  al.	  	  2015)	  
Deep Learning Approach

Integrated architecture for 
spike and connection inference  
 Convolutional neural network  
  identify relevant events in 
fluorescence time series 
 with temporal tolerance 

 Recurrent Neural Network  
 model temporal sequences 
of relevant events  

 Dynamically programmed layer 
  compute connection 
probability 

7



Model-based Approaches
 Generative models 
 auto-regressive (AR) 

 generalized linear (GLM) 

 

e.g. stochastic integrate & fire 
 Inference 

 maximum likelihood 

 Bayesian 

regularizers

8

where H(t) ≡ {x(s)|s = 1, · · · , t− 1} is a previous history of the signals and

the subscript θ denote a set of parameters to specify the probability distri-

bution.

A good example of the generative model is the autoregressive (AR) model

mathematically expressed as

xi(t) = Ai0 +
P∑

j=1

K∑

k=1

Aij(k)xj(t− k) + ϵi(t), i = 1, · · · , P.

ϵi(t) ∼ N (·|0, σ2
i ) (11)

where K is the degree of the model, Aij(k) is a parameter called an AR coef-

ficient, Ai0 is a bias term, and N (·|µ, σ2) denotes the Gaussian distribution

with mean µ and standard deviation σ (For simplicity, we assume that σ is

known in this example). By integrating two equation in Eq. (11), xi(t) can

be regarded as a sample according to the following conditional distribution:

xi(t) ∼ pθ(·|H(t)) = N
(
µi(t), σ

2
i

)
, (12)

µi(t) = Ai0 +
P∑

j=1

K∑

k=1

Aij(k)xj(t− k) (13)

where θ ≡ {Ai0|i = 1, . . . , P} ∪ {Aij(k)|i, j = 1, . . . , P ; k = 1, . . . , K} is a

set of parameters in this case. The parameter θ is determined so that the

deviance between the model and the observation data is minimized in some

sense. The simplest one is the least square method, in which θ is determined

to minimize the sum of squared residuals defined as

J(θ|D) =
P∑

i=1

T∑

t=1

ϵ2i (t) =
P∑

i=1

T∑

t=K+1

[
xi(t)− Ai0 −

P∑

j=1

K∑

k=1

Aij(k)xj(t− k)

]2
,

(14)
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describe the spike generation as a point process. The generic form is given

by

xi(t) ∼ Ber(·|ρi(t)) (15)

ρi(t) ≡ φ

(
Ai0 +

P∑

j=1

K∑

k=1

Aij(k)xj(t− k)

)
, (16)

where Bernoulli(p) denotes the Bernoulli distribution with successful proba-

bility of p. φ(·) is a so-called inverse link function for which the exponential

(φ(x) = exp(x)), the sigmoidal (φ(x) = (1+ exp(−x))−1) functions are often

used.

Stochastic leaky integrate-and-fire model. Although we have seen the GLMs

as an extension of AR models so far, the GLMs are closely related to a

stochastic leaky integrate-and-fire (LIF) model ???, which is one of the most

widely used model for analyzing the behavior of neural systems. In the

stochastic LIF models, we assume that the subthreshold membrane potential

of the ith neuron, denoted by Vi, evolves according to the following stochastic

differential equation:

dVi(t) =

(
−giVi(t) +

P∑

j=1

Iij(t)

)
dt+ σdWi(t), (17)

where gi is the membrane leak conductance and dWi(t) is an increment of a

Winer process. Iij is an influence by the jth neuron’s activity, and it is often

assumed to be

Iij(t) =
∑

{f :t(f)i <t}

κij(t− t(f)i ), (18)

where Nj is a total number of the ith neuron’s spikes observed before time t.

26

5.2. Estimation of model parameters

Maximum Likelihood Method. The standard method to determine the param-

eters is the maximum likelihood (ML) method. Note that J(θ|D) denotes

the negative of the log-likelihood function in this paper. Then, in the ML

method, the parameters are tuned such that

θ∗ = argmin
θ

J(θ|D).

This optimization can be achieved with iterative optimization algorithms

such as the gradient decent methods and the expectation-maximization (EM)

algorithms.

Regularization & Bayesian inference. A disadvantage of the ML method is to

often suffer from the overfitting issue when the number of parameters is large

relatively to the amount of data. To deal with the issue, the regularization

term is incooperated with the objective function as follows:

θ∗ = argmin
θ

{J(θ|D) + λR(θ)} ,

where R(·) is a non-negative function and λ is a constant which is usually

tuned through the cross-validation procedure. For this purpose, the Ridge

regularizer (or L2-norm regularizer)

R(θ) =
∑

r

θ2r (26)

and the least absolute shrinkage and selection operator (LASSO) regularizer

(or L1-norm regularizer)

R(θ) =
∑

r

|θr| (27)
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Neural and Ca2+ Dynamics Model
(Mishchenko et al. 2011; Fletcher et al 2014)  

 Generative model 
 stochastic IF 

 calcium dynamics 

  fluorescence 

 Inference 

 parameters  
 hidden variables 

 E-step:   

 M-step: 
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Biophysical Challenges
 Apparent/invisible connection:  
 common inputs cause apparent connections 

 connection is invisible without neural activity 

 Directionality: with limited temporal resolution  

 Cellular dynamics: post-spike adaptation, 
 post-inhibitory rebound, etc. 

 Synaptic dynamics: short-term adaptation, 
 long-term plasticity, etc. 

 Non-stationarity: network can shift between 
multiple states, such as synchronized bursting 
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Technical Challenges
 Noise: electric noise, motion artifacts, etc. 
 Time/space resolution: calcium image ~100ms 

 Hidden neurons: e.g., off the focal plane 

 External inputs: e.g. spontaneous action 

 Prior knowledge: sparseness, topography, etc. 
 Accuracy: existence, sign, magnitude, time delay 

 Scalability: thousands of neurons, 
 millions of potential connections… 

11



Challenges and Solutions
Data	  

Acquisi3on	
Pre-‐

processing	
Connec3on	  
Inference	

Post-‐
inference	 Valida3on	

Apparent	  connec3on	 c1	  d12	  e12	   a3	

Direc3onality	 b123	  c1	  d12	  e12	 a2	

Cellular	  dynamics	 c1	  d12	  e12	

Synap3c	  dynamics	 d12	  e12	

Non-‐sta3onarity	 a123	  b2	 c1	

Noise	 a123	  b1	  c1	 c1	  d12	  e12	

Time/space	  resolu3on	 c1	  e12	

Hidden	  neurons	

External	  inputs	

Prior	  knowledge	 a2	  d12	  e12	

Accuracy	 a23	  c1	  d12	  e12	 a3	 d1	

Scalability	 a23	

12
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Conclusion
 Model-free methods 
  less assumptions, less parameters 

 cannot reproduce dynamics 

 Model-based methods 

 needs hyper parameter tuning 
  reproduce dynamics for validation/analysis 

 Limitations and opportunities 

 external inputs and hidden neurons 

 non-stationarity 
 cellular/synaptic diversity and scalability 
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