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Introduction and Motivation

Fundamental and practical limitations:

Non-linear equations

Vast amount of information (∼ 104 eqs)

Uncertainty → No complete qualitative
understanding

SIZE, COMPLEXITY,
UNCERTAINTY

⇓
Statistical Physics for
Model Reduction

EGFR network from Kholodenko et al. (1999)
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Let us assume it is possible to
characterize only some nodes

Small subset of variables:
Subnetwork → “observed”
Embedded in a larger network:
Bulk → “hidden” (unknown)

Question

What can we say in general about the INFERENCE of

hidden dynamics?
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LINEAR DYNAMICS

i , j → hidden (Bulk)
a, b → observed (Subnetwork)

ξi , ξa Gaussian white noises

〈ξi(t)ξj(t
′)〉 = σ2

bδijδ(t − t ′)

〈ξa(t)ξb(t
′)〉 = σ2

s δabδ(t − t ′)

∂txi(t) = −λxi(t) +
∑

j

Jijxj(t) +
∑

a

Kiaxa(t) + ξi(t)

∂txa(t) = −λxa(t) +
∑

b

Jabxb(t) +
∑

j

Kajxj(t) + ξa(t)
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Extended Plefka Expansion
B. Bravi, P. Sollich, M. Opper, J. Phys. A., submitted, arXiv:1509.07066 (2015)

DYNAMICAL MEAN FIELD APPROXIMATION

1 Effectively non-interacting dynamics:
Couplings are replaced by memory + coloured noise

2 Extension: 1st and 2nd moments are constrained

3 Gaussian statistics conditioned on observations

Posterior mean µi(t) = best estimate of hidden dynamics
Forward-Backward propagation

Posterior variance Ci(t, t) = estimate of error of prediction
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Expect Plefka to give exact µi(t) and Ci(t, t) (=errors) when
Mean Field interactions + Thermodynamic limit NB → ∞

Stationary Regime → Time Translation Invariant
Average C̃B(ω) = 1

NB

∑

i C̃i(ω) in Fourier space

C̃B(ω) =
σ2
s

k2
︸︷︷︸

Amplitude

CB
α,γ,η,p(Ω)

︸ ︷︷ ︸

Dimensionless

Dimensionless parameters

α = NS

NB Ratio observations/hidden states

γ = j
λ

Stability of hidden dynamics γ < γc =
1

1+η

p = λ
σ

Decay constant & hidden-to-observed coupling

σ = σbk
σs

Defines the frequency scale: Ω = ω
σ
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Critical regime

We analyze in the parameter space α, γ, p the singularities of CB(0)

Critical regions

1 ∀p, α = 0 and γ > γc

No observations: internal stability

2 ∀γ, p = 0 and 0 < α < 1
(i.e. k ≫ λ at fixed σs

σb
)

“Underconstrained” hidden
system: strong constraints from

observations, but too few
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Power-law dependence of CB(0) on δα, δγ, p:
Scaling analysis ⇒ Master curves

Information on relaxation times and inference error

Ω∗ ≪ Ω ≪ 1 α → 0 CB ∼
1

Ω2
α → 1 CB ∼

1

Ω
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Thank you for your attention!
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