Inference for dynamics of continuous variables: the Extended Plefka Expansion with hidden nodes

Barbara Bravi and Peter Sollich

Department of Mathematics, King's College London
NIPS, Modelling and inference for dynamics workshop, Montreal 11 December 2015

Introduction and Motivation

Fundamental and practical limitations:

- Non-linear equations
- Vast amount of information ($\sim 10^{4}$ eqs)
- Uncertainty \rightarrow No complete qualitative understanding

SIZE, COMPLEXITY, UNCERTAINTY

\Downarrow
Statistical Physics for Model Reduction

EGFR network from Kholodenko et al. (1999)

Let us assume it is possible to characterize only some nodes

Small subset of variables: Subnetwork \rightarrow "observed" Embedded in a larger network: Bulk \rightarrow "hidden" (unknown)

Question

What can we say in general about the INFERENCE of hidden dynamics?

LINEAR DYNAMICS

$i, j \rightarrow$ hidden (Bulk)
$a, b \rightarrow$ observed (Subnetwork)
ξ_{i}, ξ_{a} Gaussian white noises

$$
\begin{aligned}
\left\langle\xi_{i}(t) \xi_{j}\left(t^{\prime}\right)\right\rangle & =\sigma_{b}^{2} \delta_{i j} \delta\left(t-t^{\prime}\right) \\
\left\langle\xi_{a}(t) \xi_{b}\left(t^{\prime}\right)\right\rangle & =\sigma_{s}^{2} \delta_{a b} \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{t} x_{i}(t)=-\lambda x_{i}(t)+\sum_{j} J_{i j} x_{j}(t)+\sum_{a} K_{i a} x_{a}(t)+\xi_{i}(t) \\
& \partial_{t} x_{a}(t)=-\lambda x_{a}(t)+\sum_{b} J_{a b} x_{b}(t)+\sum_{j} K_{a j} x_{j}(t)+\xi_{a}(t)
\end{aligned}
$$

Extended Plefka Expansion

B. Bravi, P. Sollich, M. Opper, J. Phys. A., submitted, arXiv:1509.07066 (2015)

DYNAMICAL MEAN FIELD APPROXIMATION

(1) Effectively non-interacting dynamics:

Couplings are replaced by memory + coloured noise
(2) Extension: $1^{\text {st }}$ and $2^{\text {nd }}$ moments are constrained
(3) Gaussian statistics conditioned on observations

Posterior mean $\mu_{i}(t)=$ best estimate of hidden dynamics
Forward-Backward propagation
Posterior variance $C_{i}(t, t)=$ estimate of error of prediction

Expect Plefka to give exact $\mu_{i}(t)$ and $C_{i}(t, t)$ (=errors) when Mean Field interactions + Thermodynamic limit $N^{B} \rightarrow \infty$

Stationary Regime \rightarrow Time Translation Invariant Average $\tilde{C}^{B}(\omega)=\frac{1}{N^{B}} \sum_{i} \tilde{C}_{i}(\omega)$ in Fourier space

$$
\tilde{C}^{B}(\omega)=\underbrace{\frac{\sigma_{s}^{2}}{k^{2}}}_{\text {Amplitude }} \underbrace{\mathcal{C}_{\alpha, \gamma, \eta, p}^{B}(\Omega)}_{\text {Dimensionless }}
$$

Dimensionless parameters

- $\alpha=\frac{N^{S}}{N^{B}} \quad$ Ratio observations/hidden states
- $\gamma=\frac{j}{\lambda} \quad$ Stability of hidden dynamics $\gamma<\gamma_{c}=\frac{1}{1+\eta}$
- $p=\frac{\lambda}{\sigma} \quad$ Decay constant \& hidden-to-observed coupling
$\sigma=\frac{\sigma_{b} k}{\sigma_{s}} \quad$ Defines the frequency scale: $\quad \Omega=\frac{\omega}{\sigma}$

Critical regime

We analyze in the parameter space α, γ, p the singularities of $\mathcal{C}^{B}(0)$

Critical regions

(1) $\forall p, \alpha=0$ and $\gamma>\gamma_{c}$

No observations: internal stability
(2) $\forall \gamma, p=0$ and $0<\alpha<1$
(i.e. $k \gg \lambda$ at fixed $\frac{\sigma_{s}}{\sigma_{b}}$)
"Underconstrained" hidden system: strong constraints from observations, but too few

Power-law dependence of $\mathcal{C}^{B}(0)$ on $\delta \alpha, \delta \gamma, p$:
Scaling analysis \Rightarrow Master curves
Information on relaxation times and inference error

Thank you for your attention!

