Inference for dynamics of continuous variables: the Extended Plefka Expansion with hidden nodes

Barbara Bravi and Peter Sollich

Department of Mathematics, King's College London

NIPS, Modelling and inference for dynamics workshop, Montreal 11 December 2015

Introduction and Motivation

Fundamental and practical limitations:

Non-linear equations

- Vast amount of information ($\sim 10^4$ eqs)
- Uncertainty → No complete qualitative understanding

SIZE, COMPLEXITY, UNCERTAINTY

↓ Statistical Physics for Model Reduction

EGFR network from Kholodenko et al. (1999)

Let us assume it is possible to characterize **only some** nodes

Small subset of variables: **Subnetwork** \rightarrow "observed" Embedded in a larger network: **Bulk** \rightarrow "hidden" (unknown)

Question

What can we say in general about the **INFERENCE of** hidden dynamics?

LINEAR DYNAMICS

i, j
ightarrow hidden (Bulk) a, b
ightarrow observed (Subnetwork)

 ξ_i , ξ_a Gaussian white noises

$$\langle \xi_i(t)\xi_j(t')\rangle = \sigma_b^2 \delta_{ij}\delta(t-t')$$

$$\langle \xi_{a}(t)\xi_{b}(t')\rangle = \sigma_{s}^{2}\delta_{ab}\delta(t-t')$$

● ▶ < ミ ▶

< ∃ >

э

$$\partial_t x_i(t) = -\lambda x_i(t) + \sum_j J_{ij} x_j(t) + \sum_a K_{ia} x_a(t) + \xi_i(t)$$

 $\partial_t x_a(t) = -\lambda x_a(t) + \sum_b J_{ab} x_b(t) + \sum_j K_{aj} x_j(t) + \xi_a(t)$

DYNAMICAL MEAN FIELD APPROXIMATION

- Effectively non-interacting dynamics:
 Couplings are replaced by memory + coloured noise
- Extension: 1st and 2nd moments are constrained
- Gaussian statistics conditioned on observations

Posterior mean $\mu_i(t)$ = best estimate of hidden dynamics Forward-Backward propagation

Posterior variance $C_i(t, t)$ = estimate of **error** of prediction

Expect Plefka to give exact $\mu_i(t)$ and $C_i(t, t)$ (=errors) when Mean Field interactions + Thermodynamic limit $N^B \to \infty$

Stationary Regime \rightarrow Time Translation Invariant Average $\tilde{C}^{B}(\omega) = \frac{1}{N^{B}} \sum_{i} \tilde{C}_{i}(\omega)$ in **Fourier** space

Dimensionless parameters

- $\alpha = \frac{N^{S}}{N^{B}}$ Ratio observations/hidden states
- $\gamma = rac{j}{\lambda}$ Stability of hidden dynamics $\gamma < \gamma_{c} = rac{1}{1+\eta}$
- $p = \frac{\lambda}{\sigma}$ Decay constant & hidden-to-observed coupling

 $\sigma = \frac{\sigma_b k}{\sigma_s}$ Defines the frequency scale: $\Omega = \frac{\omega}{\sigma}$

Critical regime

We analyze in the parameter space α , γ , p the **singularities** of $C^{B}(0)$

Critical regions

 $\ \, {\bf 0} \ \ \forall {\it p}, \ \alpha = {\bf 0} \ {\rm and} \ \ \gamma > \gamma_{\it c}$

No observations: internal stability

> "Underconstrained" hidden system: strong constraints from observations, but too few

Power-law dependence of $C^B(0)$ on $\delta \alpha$, $\delta \gamma$, p: Scaling analysis \Rightarrow Master curves Information on relaxation times and inference error

Thank you for your attention!

< 10 × 4

< ∃→

э