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Are neural networks poised at a  
thermodynamic critical point?

figure adapted from Beggs & Timme, 2012

Beggs and Timme Being critical of criticality in the brain

the critical point. [Critio asks another person sitting at the table
for a fresh napkin and draws Figure 4.]

Critio: Again, this shows the separation of phases nicely. On
the left you have the ordered phase, with low temperature. This is
sometimes called the subcritical regime. On the right you have the
disordered phase, with high temperature, and this is sometimes
called the supercritical regime. Between them you have the phase
transition region, which is very narrow and occurs at the critical
temperature.

Mnemo: I think I see what is going on. Only at the critical tem-
perature can you have communication that spans large distances.
So if I were to make an analogy with a neural network, it would
be that at the critical point, the neurons can communicate most
strongly and over the largest number of synapses, right?

Critio: Exactly!
Mnemo: But wait, what do you mean by “communication?”

When the model is at low temperatures, the state of one lattice site
strongly influences the state of lattice sites throughout the whole
network. So, it would seem to me that communication is maxi-
mized when the temperature is low, not when the system is at the
critical point.

Critio: Ah, that is a subtle point. Clearly, we haven’t been very
rigorous with our definition of “communication,” but let me see if
I can clarify my point. When the model is at low temperatures, the
coupling between the lattice sites is strong, so coordination is high.
However, the state of each lattice site doesn’t change very much
through time, so fluctuations are low. Communication requires
both coupling and variability, or in other words, both coordina-
tion and fluctuation. If communication is to take place, lattice
sites must be able to influence each other and that influence must
actually affect changes. Does that make more sense?

Mnemo: Yes, I see your point about the distinction between
communication and coupling.

Critio: Great! So, at the critical point these two qualities of
the system – coupling and variability – are balanced to produce
long distance communication. And it turns out that it is not

FIGURE 4 | Correlation length as a function of temperature for a
simulation of the Ising Model. Near the critical temperature the
correlation length rapidly approaches a maximum value. This sharp peak
separates the ordered phase from the disordered phase and occurs at the
phase transition point.

just communication that would be optimized at the critical point
(Beggs and Plenz, 2003; Bertschinger and Natschlager, 2004; Maass
et al., 2004; Ramo et al., 2007; Tanaka et al., 2009; Chialvo, 2010;
Shew et al., 2011). Many other researchers have pointed out, with
very general models, that information storage (Socolar and Kauff-
man, 2003; Kauffman et al., 2004; Haldeman and Beggs, 2005)
and computational power (Bertschinger and Natschlager, 2004)
are expected to be optimized there as well (Chialvo, 2004, 2010;
Plenz and Thiagarajan, 2007; Beggs, 2008). In addition, the ability
of the network to respond to inputs of many different sizes, called
its dynamic range, is expected to be optimal at the critical point
(Kinouchi and Copelli, 2006; Shew et al., 2009). Phase synchrony
also appears to be optimized at the critical point (Yang et al., 2012).

Mnemo: So this sounds pretty reasonable to me so far. But it
is only an analogy. You haven’t shown me any evidence to suggest
that the brain might be doing this. What evidence, if any, do you
have to make me think that this is connected to real neurons?

CRITICALITY AND POWER LAWS
Critio: Again, a very fair question. Before we can get to the neural
data, I first need to show you how I got interested in this topic. Let
me return for a moment to the plot of the average dynamic cor-
relation length. If I were to change the axes by making them both
logarithmic, then I would get something like this for the dynamic
correlation, plotted now only for the critical case. [Critio draws
Figure 5.]

Critio: When plotted this way, the dynamic correlation approx-
imates a straight line over part of its range. This suggests that it
could be described by a so-called “power law,” where the dynamic
correlation, C, is related to the distance, D, raised to some negative
power, say −α. Note that the slope of the power law line when
plotted logarithmically is given by −α. Well, the physics of criti-
cal phenomena tells us that near the critical point, a system will
have many variables that can be described by power law functions
(Stanley, 1971; Goldenfeld, 1992; Yeomans, 1992; Nishimori and
Ortiz, 2011). In addition to the dynamic correlation as a function

FIGURE 5 | Hypothetical relationship between the average dynamic
correlation between two lattice sites and the distance between those
lattice sites at the critical temperature in a small simulation of the
Ising model.
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We consider the distribution P(x) of binary ‘spike-
words’ x.

binary words: x

population  
spike counts: k
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‘K-pairwise model’: An Ising model with spike-count 
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are sufficiently long to estimate the probabilities of all of these

individual states. But with N = 100, there are 2100*1030 possible
states, and so it is not possible to ‘‘just measure’’ all the
probabilities. Thus, we need another strategy for testing our
models.

Striking (and model–independent) evidence for nontrivial
collective behavior in these networks is obtained by asking for
the probability that K out of the N neurons generate a spike in the

same small window of time, as shown in Figure 5. This
distribution, PN (K), should become Gaussian at large N if the
neurons are independent, or nearly so, and we have noted that the
correlations between pairs of cells are weak. Thus P2(K) is very
well approximated by an independent model, with fractional
errors on the order of the correlation coefficients, typically less
than ,10%. But, even in groups of N = 10 cells, there are
substantial departures from the predictions of an independent
model (Figure 5A). In groups of N = 40 cells, we see K = 10 cells
spiking synchronously with probability ,104 times larger than
expected from an independent model (Figure 5B), and the
departure from independence is even larger at N = 100
(Figure 5C) [12,15].

Maximum entropy models that match the mean spike rate and
pairwise correlations in a network make an unambiguous,
quantitative prediction for PN (K), with no adjustable parameters.
In smaller groups of neurons, certainly for N = 10, this prediction
is quite accurate, and accounts for most of the difference between
the data and the expectations from an independent model, as
shown in Figure 5. But even at N = 40 we see small deviations
between the data and the predictions of the pairwise model.
Because the silent state is highly probable, we can measure
PN (K~0) very accurately, and the pairwise models make errors of
nearly a factor of three at N = 100, and independent models are off
by a factor of about twenty. The pairwise model errors in P(K) are
negligible when compared to the many orders of magnitude
differences from an independent model, but they are highly
significant. The pattern of errors also is important, since in the real
networks silence persists as being highly probable even at
N = 120—with indications that this surprising trend might
continue towards larger N [39] —and the pairwise model doesn’t
quite capture this.

If a model based on pairwise correlations doesn’t quite account
for the data, it is tempting to try and include correlations among

Figure 4. A test for overfitting. (A) The per-neuron average log-
probability of data (log-likelihood, L~hlog P(s)iexpt=N) under the
pairwise model of Eq (19), computed on the training repeats (black
dots) and on the testing repeats (red dots), for the same group of
N = 100 neurons shown in Figure 1 and 2. Here the repeats have been
reordered so that the training repeats precede testing repeats; in fact,
the choice of test repeats is random. (B) The ratio of the log-likelihoods
on test vs training data, shown as a function of the network size N. Error
bars are the standard deviation across 30 subgroups at each value of N.
doi:10.1371/journal.pcbi.1003408.g004

Figure 5. Predicted vs measured probability of K simultaneous spikes (spike synchrony). (A–C) PN (K) for subnetworks of size
N~10,40,100; error bars are s.d. across random halves of the duration of the experiment. For N = 10 we already see large deviations from an
independent model, but these are captured by the pairwise model. At N = 40 (B), the pairwise models miss the tail of the distribution, where
P(K)v10{3 . At N = 100 (C), the deviations between the pairwise model and the data are more substantial. (D) The probability of silence in the
network, as a function of population size; error bars are s.d. across 30 subgroups of a given size N. Throughout, red shows the data, grey the
independent model, and black the pairwise model.
doi:10.1371/journal.pcbi.1003408.g005

Collective Behavior in a Network of Real Neurons

PLOS Computational Biology | www.ploscompbiol.org 7 January 2014 | Volume 10 | Issue 1 | e1003408

are sufficiently long to estimate the probabilities of all of these

individual states. But with N = 100, there are 2100*1030 possible
states, and so it is not possible to ‘‘just measure’’ all the
probabilities. Thus, we need another strategy for testing our
models.

Striking (and model–independent) evidence for nontrivial
collective behavior in these networks is obtained by asking for
the probability that K out of the N neurons generate a spike in the

same small window of time, as shown in Figure 5. This
distribution, PN (K), should become Gaussian at large N if the
neurons are independent, or nearly so, and we have noted that the
correlations between pairs of cells are weak. Thus P2(K) is very
well approximated by an independent model, with fractional
errors on the order of the correlation coefficients, typically less
than ,10%. But, even in groups of N = 10 cells, there are
substantial departures from the predictions of an independent
model (Figure 5A). In groups of N = 40 cells, we see K = 10 cells
spiking synchronously with probability ,104 times larger than
expected from an independent model (Figure 5B), and the
departure from independence is even larger at N = 100
(Figure 5C) [12,15].

Maximum entropy models that match the mean spike rate and
pairwise correlations in a network make an unambiguous,
quantitative prediction for PN (K), with no adjustable parameters.
In smaller groups of neurons, certainly for N = 10, this prediction
is quite accurate, and accounts for most of the difference between
the data and the expectations from an independent model, as
shown in Figure 5. But even at N = 40 we see small deviations
between the data and the predictions of the pairwise model.
Because the silent state is highly probable, we can measure
PN (K~0) very accurately, and the pairwise models make errors of
nearly a factor of three at N = 100, and independent models are off
by a factor of about twenty. The pairwise model errors in P(K) are
negligible when compared to the many orders of magnitude
differences from an independent model, but they are highly
significant. The pattern of errors also is important, since in the real
networks silence persists as being highly probable even at
N = 120—with indications that this surprising trend might
continue towards larger N [39] —and the pairwise model doesn’t
quite capture this.

If a model based on pairwise correlations doesn’t quite account
for the data, it is tempting to try and include correlations among

Figure 4. A test for overfitting. (A) The per-neuron average log-
probability of data (log-likelihood, L~hlog P(s)iexpt=N) under the
pairwise model of Eq (19), computed on the training repeats (black
dots) and on the testing repeats (red dots), for the same group of
N = 100 neurons shown in Figure 1 and 2. Here the repeats have been
reordered so that the training repeats precede testing repeats; in fact,
the choice of test repeats is random. (B) The ratio of the log-likelihoods
on test vs training data, shown as a function of the network size N. Error
bars are the standard deviation across 30 subgroups at each value of N.
doi:10.1371/journal.pcbi.1003408.g004

Figure 5. Predicted vs measured probability of K simultaneous spikes (spike synchrony). (A–C) PN (K) for subnetworks of size
N~10,40,100; error bars are s.d. across random halves of the duration of the experiment. For N = 10 we already see large deviations from an
independent model, but these are captured by the pairwise model. At N = 40 (B), the pairwise models miss the tail of the distribution, where
P(K)v10{3 . At N = 100 (C), the deviations between the pairwise model and the data are more substantial. (D) The probability of silence in the
network, as a function of population size; error bars are s.d. across 30 subgroups of a given size N. Throughout, red shows the data, grey the
independent model, and black the pairwise model.
doi:10.1371/journal.pcbi.1003408.g005

Collective Behavior in a Network of Real Neurons

PLOS Computational Biology | www.ploscompbiol.org 7 January 2014 | Volume 10 | Issue 1 | e1003408

Pairwise model 
fails to capture 

spike-count 
distribution for 

large N



Maximum entropy models can be used to translate 
concepts from thermodynamics to neural data.

Tkacik, Bialek et al



Maximum entropy models can be used to translate 
concepts from thermodynamics to neural data.

PT (x) =
1

ZT
exp (�E(x)/T )Probability:

Tkacik, Bialek et al



Maximum entropy models can be used to translate 
concepts from thermodynamics to neural data.

PT (x) =
1

ZT
exp (�E(x)/T )Probability:

Tkacik, Bialek et al

Heat capacity: CT =
@hE(x)i

@T

=
VarhE(x)i

T

2



Maximum entropy models can be used to translate 
concepts from thermodynamics to neural data.

PT (x) =
1

ZT
exp (�E(x)/T )Probability:

Tkacik, Bialek et al

Thermo- 
dynamics

Heat capacity: CT =
@hE(x)i

@T

=
VarhE(x)i

T

2



Maximum entropy models can be used to translate 
concepts from thermodynamics to neural data.

PT (x) =
1

ZT
exp (�E(x)/T )Probability:

Tkacik, Bialek et al

Thermo- 
dynamics

Heat capacity: CT =
@hE(x)i

@T

=
VarhE(x)i

T

2

Rewrite energy:
E(x) = �T logPT (x)� T logZT

E(x) = � logP (x)� logZ



Maximum entropy models can be used to translate 
concepts from thermodynamics to neural data.

PT (x) =
1

ZT
exp (�E(x)/T )Probability:

Tkacik, Bialek et al

Thermo- 
dynamics

Heat capacity: CT =
@hE(x)i

@T

=
VarhE(x)i

T

2

Rewrite energy:
E(x) = �T logPT (x)� T logZT

E(x) = � logP (x)� logZ

Calculating P(x) at T: 
PT (x) =

1

ˆ

ZT

exp (logP (x)/T ) / P (x)

1/T



Maximum entropy models can be used to translate 
concepts from thermodynamics to neural data.

PT (x) =
1

ZT
exp (�E(x)/T )Probability:

Substitute into heat capacity: CT = VarhlogPT (x)i

Tkacik, Bialek et al

Thermo- 
dynamics

Heat capacity: CT =
@hE(x)i

@T

=
VarhE(x)i

T

2

Rewrite energy:
E(x) = �T logPT (x)� T logZT

E(x) = � logP (x)� logZ

Calculating P(x) at T: 
PT (x) =

1

ˆ

ZT

exp (logP (x)/T ) / P (x)

1/T



Maximum entropy models can be used to translate 
concepts from thermodynamics to neural data.

PT (x) =
1

ZT
exp (�E(x)/T )Probability:

Substitute into heat capacity: CT = VarhlogPT (x)i

Specific heat: cT =
1

N
CT

Tkacik, Bialek et al

Thermo- 
dynamics

Heat capacity: CT =
@hE(x)i

@T

=
VarhE(x)i

T

2

Rewrite energy:
E(x) = �T logPT (x)� T logZT

E(x) = � logP (x)� logZ

Calculating P(x) at T: 
PT (x) =

1

ˆ

ZT

exp (logP (x)/T ) / P (x)

1/T



Maximum entropy models can be used to translate 
concepts from thermodynamics to neural data.

PT (x) =
1

ZT
exp (�E(x)/T )Probability:

Substitute into heat capacity: CT = VarhlogPT (x)i

Specific heat: cT =
1

N
CT

Tkacik, Bialek et al

Thermo- 
dynamics

Quantities 
measurable 

from 
statistical 

model

Heat capacity: CT =
@hE(x)i

@T

=
VarhE(x)i

T

2

Rewrite energy:
E(x) = �T logPT (x)� T logZT

E(x) = � logP (x)� logZ

Calculating P(x) at T: 
PT (x) =

1

ˆ

ZT

exp (logP (x)/T ) / P (x)

1/T



Signatures of criticality in a recording of retinal 
ganglion cells: Are population codes ‘critical’?

Tkacik, Mora, Marre, Amodei, Palmer, Berry, Bialek, PNAS 2015  
Thermodynamics and signatures of criticality in a network of neurons

Tkacik et al 2009, Mora & Bialek 2011, Stephens et al 2012, Yu et al 2013, Mora et al 2015 



Signatures of criticality in a recording of retinal 
ganglion cells: Are population codes ‘critical’?

Tkacik, Mora, Marre, Amodei, Palmer, Berry, Bialek, PNAS 2015  
Thermodynamics and signatures of criticality in a network of neurons

Tkacik et al 2009, Mora & Bialek 2011, Stephens et al 2012, Yu et al 2013, Mora et al 2015 

peak at T=1



Signatures of criticality in a recording of retinal 
ganglion cells: Are population codes ‘critical’?

Tkacik, Mora, Marre, Amodei, Palmer, Berry, Bialek, PNAS 2015  
Thermodynamics and signatures of criticality in a network of neurons

Tkacik et al 2009, Mora & Bialek 2011, Stephens et al 2012, Yu et al 2013, Mora et al 2015 

peak at T=1



Signatures of criticality in a recording of retinal 
ganglion cells: Are population codes ‘critical’?

Tkacik, Mora, Marre, Amodei, Palmer, Berry, Bialek, PNAS 2015  
Thermodynamics and signatures of criticality in a network of neurons

Tkacik et al 2009, Mora & Bialek 2011, Stephens et al 2012, Yu et al 2013, Mora et al 2015 

peak grows 
with N 

peak at T=1





• What neural mechanisms can explain this observation?



• What neural mechanisms can explain this observation?
• Does it require finely tuned parameters (e.g adaptation)?



• What neural mechanisms can explain this observation?
• Does it require finely tuned parameters (e.g adaptation)?
• What is a minimal model reproducing this behaviour?



• What neural mechanisms can explain this observation?
• Does it require finely tuned parameters (e.g adaptation)?
• What is a minimal model reproducing this behaviour?

Macke, Opper, Bethge 2011 
Schwab & Metha et al 2014 

Aitchison & Latham 2014



The simplest possible model of a patch of retina
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If you use use smart parameter-updates, you do not 
need to store the entire MCMC sample.
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Change in log-likelihood:

As long as we only update one h or J term (or all of the spike count terms) at each 
iteration, we only need to store the feature-means, not the entire MCMC sample.

For x 2 {0, 1} : exp(↵x) = x exp(↵) + 1� x
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Analysis: Subsampling a homogeneous population 
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Rate of divergence:  
More correlation, more criticality
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• Neural data analysis:
• “Infinite-range” correlations are ubiquitous in local neural populations

• Shared inputs and latent modulators

• Random subsampling gives rise to spurious infinite-range correlations 

• (Equilibrium) statistical physics:
• “Infinite-range” correlations are unusual

• No external, shared input

• N is varied by considering systems of different size
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• We concentrated on the specific heat, and did not consider other 
signatures of criticality, such as Zipf-Scaling  
(Tkacik et al 2015, Aitchison et al 2014, Schwab et al 2014).  

• Statistics of neural data can look unusual when viewed through the 
lens of equilibrium statistical physics, even when the underlying 
mechanisms are not.

• We predict that signatures of criticality will also be found in other 
systems and brain areas.

• Is thermodynamic criticality an organising principle of neural codes?
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