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u  It is estimated that between 5-40% of the intracellular volume is  
occupied by macromolecules. Hence the intracellular medium is 
NON-DILUTE and CROWDED. 
 

What is macromolecular crowding? 

 
u  The vast majority of these 
macromolecules do not par-
ticipate in a given chemical 
reaction. However they still 
influence kinetics via volume 
exclusion (steric) effects. 
 

Cross Section of an E. Coli Cell. Image is built using 
structure analysis, electron microscopy, and biochemical 
analysis to have the proper number of molecules in the 
proper place and with proper size and shape.  
D. S. Goodsell 1999 



 
u  The time between successive biochemical reaction events, e.g. dissociation 
     and binding, is a random variable.  
 
u  This randomness leads to fluctuations in the chemical concentrations, also 
     called intrinsic noise. 
 
 
 

What is intrinsic noise? 

Spatial Scale 

Sub-cellular 
compartment 

Cell 

Test- 
Tube 

Microscopic: a few molecules 

Mesoscopic: tens/ hundreds/few  
                     thousand molecules 
                  

Macroscopic: Avogadro number 
                      of molecules 

Chemical Kinetics  
appears 

Deterministic 

Chemical Kinetics  
is 

Stochastic 



The standard stochastic description:  
Chemical Master Equation (CME) 

Major Assumptions: 
 
   The system is well-stirred – guarantees that the molecules are randomly  
   distributed throughout the volume and that hence we can describe them 
   just by the molecule numbers, i.e. ignore molecular position & velocity. 
 
   The molecules are point-particles – molecules do not experience volume  
   exclusion effects, an assumption true in the dilute limit. 
 
These assumptions imply that the time between successive reactions 
is exponentially distributed and hence the system is Markovian. 
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nB
= probability that the system has      molecules of A, 
          of B, etc …, at time t. 

€ 

nA

The CME is a set of ODEs for                          which is derived 
by modeling chemical reactions as a continuous-time Markov process.                             
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Noise + space 
in dilute conditions  



Spatial stochastic description:  
Reaction-Diffusion Master Equation 

(RDME) Major Assumptions: 
 
   The system is well-stirred in small regions of space – specifically space 
   is divided into small boxes (voxels) and in each box we assume well- 
   mixed conditions but NOT throughout the whole space. 
 
   The molecules are point-particles 
 
   Diffusion is modeled as hopping from particles from one voxel to a  
   neighboring one. 
 
 
 
 
    
 
  
      

P(nA
i,nB

i,...,t)
nB
i

= probability that there are      molecules of A, 
          of B, etc …, at time t in voxel i. 

nA
i

The RDME is a set of ODEs for                        which is derived by 
modeling chemical reactions inside each voxel + diffusion between  
voxels as a continuous-time Markov process.                             

P(nA
i,nB

i,...,t)
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CME 
(well-mixing 

across space) 

RDME 
(well-mixing 
locally only) 

Brownian dynamics 
(no length scale on which 

well-mixing occurs) 



Problem: the high dimensionality  
of the RDME  

    Consider a simple dimerisation reaction where two molecules of the 
    same type A bind to form a second type of molecule B: 
 
    The CME describes the chemical reaction in the whole space:  
 
                       2 species + 2 reactions 
 
    The RDME describes the set of chemical & diffusive reactions in each  
    of the N2 voxels on a grid with coordination number z: 

 
2N2 species + 2N2 chemical reactions + 2zN2 diffusion reactions  

         

A+ A↔B

Ai + Ai ↔Bi

Ai ↔ Aj

Bi ↔Bj

Chemical reaction in voxel i 

Species A diffusing between two neighboring voxels 
(i and j) 

Species B diffusing between two neighboring voxels 
(i and j) 



Approximation of the RDME of  
a multi-species system 

Steps of the calculation: 
 
   1. Starting from a multi-species RDME reduce to an effective single-species  
       RDME using time-scale separation or other methods. 
 
   2. Specify steady-state conditions and assume the same reactions occur all 
       over space with some finite diffusion coefficient. 
 
   3. Derive coupled equations for the first and second moments of the number  
       of molecules in each voxel. 
 
   4. Expand each moment as a Taylor series in a small parameter … the inverse  
       volume of each voxel. 
 
   5. Simplify resulting expressions by assuming number of voxels is large. 
 
 
 
    
 
  
      



Approximation of the 2D RDME of  
a multi-species system 

The general approximative solution for the mean concentration in each voxel: 
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Deterministic  
    solution 

Correction for 
finite molecule 
numbers 

Correction for 
finite diffusion 
coefficient 

α =   Jacobian of non-spatial rate equations
β =   function of stoichiometric & rate constants 
kD =  Diffusion rate between voxels
N2 = Total number of voxels in 2D space
V =   Total area of all space



Application: modeling a tissue, wherein 
each cell has a gene regulatory 

network + it is well-mixed + it 
communicates with neighbouring cells 
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RDME
Mean of RDME
RE
EMRE
sEMRE
Approximate sEMRE

RE: deterministic rate equations 
EMRE: RE + correction due to finite molecule numbers 
sEMRE: EMRE + correction due to finite diffusion coefficients 



Noise + space 
in crowded conditions  



Spatial crowded stochastic description:  
cRDME 

Major Assumption: Molecules all have the same finite size  
 
Features: 
 
   A description at the molecule level  – space is divided into voxels whose size is  
   that of one molecule. 
 
   Volume exclusion is included  –  Molecules can hop between neighboring voxels  
   only if there is an empty space. Each voxel can hold at most 1 molecule. 
 
   Chemical reactions occur between molecules in neighboring voxels  –  this is a  
   natural outcome of modeling at the scale of a single molecule. 
 
   Empty space is explicitly tracked and modeled –  this is a natural requirement 
   needed to impose volume exclusion 
 
 



Illustration of  
RDME vs cRDME modeling 

    The RDME describing a dimerisation reaction in non-crowded conditions: 
 
 
 
 
 
 
 
 
    The cRDME describing a dimerisation reaction in crowded conditions: 
 
    

         

Ai + Ai ↔Bi

Ai ↔ Aj

Bi ↔Bj

Chemical reaction in voxel i 

Species A diffusing between two neighboring voxels 
(i and j) 

Species B diffusing between two neighboring voxels 
(i and j) 

Ai + Aj ↔Bi +Ej

Ai +Ej ↔Ei + Aj

Bi +Ej ↔Ei +Bj

Chemical reaction in between 2 A’s in neighboring voxels  

Species A diffusing between two neighboring voxels 
(i and j). Ei stands for empty space in voxel i 

Species B diffusing between two neighboring voxels 
(i and j) 



RDME cRDME 



Exact solution of the cRDME  
in equilibrium conditions 

Global solution = probability distribution for the number of molecules 
                              of each species in the whole compartment 
 
 
 
We consider a chemical system of reversible chemical reactions in a closed 
compartment. In steady-state such a system obeys detailed-balance, i.e., 
one can write a master equation for each pair of states and this allows an 
exact local and global solution of the cRDME (and RDME).  
 



Exact global solution of the cRDME in 
equilibrium conditions 

Exact mean concentrations for a system with M chemical species 
 

!φi
Sij =
!kj

!kj 'i=1

M+1

∏For each reversible reaction j, one has the  
relation: 

where 
!φi

Sij

!kj       !kj '

is the mean concentration of species i (Species M+1 is space) 

is the change in the number of molecules of species i when  
reaction j occurs 

              and         are the reaction rate constants for the forward 
    & backward reactions of the reversible pair j   



Exact global solution of the cRDME in 
equilibrium conditions 

The global equilibrium distribution is a constrained multivariate  
Poisson distribution: 
 

P(n1,..,nM+1) = C
Ω !φ j( )

nj

nj !j=1

M+1

∏

The volume exclusion constraint: N is maximum number  
of molecules allowed in the compartment 

These are the Y chemical conservation laws 
which characterize a chemical system  

ni =N
i=1

M+1

∑

together with the two sets of constraints: 

fk (
!
n) = Kk,  k =1,..,Y



Exact global solution of the RDME in 
equilibrium conditions (same as CME) 

The global equilibrium distribution is a constrained multivariate  
Poisson distribution: 
 

P(n1,..,nM ) = C
Ωφ j( )nj

nj !j=1

M

∏

These are the Y chemical conservation laws 
which characterize a chemical system  

together with the single set of constraints: 

fk (
!
n) = Kk,  k =1,..,Y

φi = !φi N→∞                                           ΩNote that               in the dilute limit                  at constant compartment volume   



Chemical systems with no  
chemical conservation laws 

The global equilibrium distribution according to the RDME is a multivariate  
Poisson distribution. 
 
The global equilibrium distribution according to the cRDME is a multinomial  
distribution. 
 
 

The marginal distribution of a chemical species according to the RDME is a  
Poisson distribution. 
 
The marginal distribution of a chemical species according to the cRDME is a  
Binomial distribution. 
 
 

∅↔ A,  A+ A↔BExample: 
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Crowding leads to sub-Poissonian 
fluctuations 

Crowding leads to deviations from the 
standard inverse square root law for  
the size of fluctuations.  

Crowding can lead to a flip in the skewness 
of the distribution (right-skew to left-skew) 



Chemical systems with a special type 
of chemical conservation laws 

We consider a chemical conservation law of the form: 
 

ni = k
i=L

M

∑ ,     L <M

∅↔ A,  A+B↔C                                       nB +nC = kExample: has the conservation law 

Species not involved 
in a chemical cons 
law e.g. A 

Species involved in a 
chemical cons law 
e.g. B, C 
 

Marginal dist (RDME) Poisson Binomial 
Marginal dist (cRDME) Binomial Binomial 
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Crowding typically has a much larger effect on the marginals of species not  
involved in the chemical conservation law 

∅↔ A,  A+B↔C                                       

Marginal distribution of A Marginal distribution of B 



Chemical systems with other types of 
chemical conservation laws 

Although exact solution applies to these systems as well, their probability  
distribution is not of the form of a well known distribution and hence no 
general results can be easily deduced. 
 

A+ A↔B                                      nB + 2nA = kExample: has the conservation law 
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R=1000
R=1

(i) 

(ii) (iii) 

(i)   Fluctuations are sub-Poissonian 
      for both RDME and cRDME  
 
(ii)  Fluctuations are sub-Poissonian (RDME) 
     and super-Poissonian (cRDME) 
 
(iii) Fluctuations are super-Poissonian 
      for both RDME and cRDME  
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