Inference in Ising Models

Bhaswar B. Bhattacharya

(Joint work with Sumit Mukherjee)

Stanford University

11th December, 2015

The Ising Model

• The data is a vector of dependent ± 1 random variables

Preliminaries

$$\sigma = (\sigma_1, \sigma_2, \cdots, \sigma_N).$$

• The dependence between the coordinates of σ are modeled by a one-parameter exponential family on $S_N := \{-1, 1\}^N$

$$\mathbb{P}_{\beta}(\sigma=\tau) = 2^{-N} \exp\left\{\frac{1}{2}\beta H_N(\tau) - F_N(\beta)\right\}$$

Here

- $\beta > 0$ is the natural parameter (inverse temperature),
- the sufficient statistic is a quadratic form:

$$H_N(\tau) = \tau' J_N \tau = \sum_{1 \le i,j \le N} J_N(i,j) \tau_i \tau_j$$

for a symmetric matrix J_N with zeros on the diagonals.

• $F_N(\beta)$ is the *log-normalizing constant* which is determined by the condition $\sum_{\tau \in S_N} \mathbb{P}\{\sigma = \tau\} = 1.$

The Problem

Goal: We want to estimate the parameter β given one realization from the model.

The Problem

- **Goal:** We want to estimate the parameter β given one realization from the model.
- Maximum Likelihood Estimation: Very difficult due to appearance of an intractable normalizing constant $F_N(\beta)$ in the likelihood.

The Problem

- **Goal:** We want to estimate the parameter β given one realization from the model.
- Maximum Likelihood Estimation: Very difficult due to appearance of an intractable normalizing constant $F_N(\beta)$ in the likelihood.
- Maximum Pseudo-Likelihood Estimation (MPLE): The pseudo-likelihood is obtained by multiplying all of the conditional likelihoods (Besag 1974).
 - The distribution of σ_i given $\{\sigma_j, j \neq i\}$ takes the values +1 and -1 with probabilities $\frac{e^{\beta m_i}}{e^{\beta m_i} + e^{-\beta m_i}}$ and $\frac{e^{-\beta m_i}}{e^{\beta m_i} + e^{-\beta m_i}}$ respectively, where $m_i = \sum_{j=1}^n J_N(i, j)\sigma_j$.
 - The value of $\hat{\beta}$ which maximizes the pseudo-likelihood is the pseudo-likelihood estimator $\hat{\beta}_N$.

Consistency of the MPLE Non-Estimation in Ising models

Consistency of the MPLE

Theorem (Chatterjee (2007))

If $\sup_N ||J_N|| < \infty$ and

$$\lim \inf_{N \to \infty} \frac{1}{N} F_N(\beta_0) > 0,$$

then the MPLE $\hat{\beta}_N$ is \sqrt{N} -consistent at $\beta = \beta_0$.

Consistency of the MPLE Non-Estimation in Ising models

Consistency of the MPLE

Theorem (Chatterjee (2007))

If $\sup_N ||J_N|| < \infty$ and

$$\lim \inf_{N \to \infty} \frac{1}{N} F_N(\beta_0) > 0,$$

then the MPLE $\hat{\beta}_N$ is \sqrt{N} -consistent at $\beta = \beta_0$.

Consistency of the MPLE: Our Results

Theorem (B.-Mukherjee (2015))

Let $\sup_{N\geq 1} ||J_N|| < \infty$, and $\beta_0 > 0$ be fixed. Suppose $\{a_N\}_{N\geq 1}$ is a sequence of positive reals diverging to ∞ such that

$$0 < \lim_{\delta \to 0} \liminf_{N \to \infty} \frac{1}{a_N} F_N(\beta_0 - \delta) \le \lim_{\delta \to 0} \limsup_{N \to \infty} \frac{1}{a_N} F_N(\beta_0 + \delta) < \infty.$$

Then (under technical conditions) the MPLE $\hat{\beta}_N$ is $\sqrt{a_N}$ -consistent for $\beta = \beta_0$.

Consistency of the MPLE: Our Results

Theorem (B.-Mukherjee (2015))

Let $\sup_{N\geq 1} ||J_N|| < \infty$, and $\beta_0 > 0$ be fixed. Suppose $\{a_N\}_{N\geq 1}$ is a sequence of positive reals diverging to ∞ such that

 $0 < \liminf_{\delta \to 0} \liminf_{N \to \infty} \frac{1}{a_N} F_N(\beta_0 - \delta) \le \lim_{\delta \to 0} \limsup_{N \to \infty} \frac{1}{a_N} F_N(\beta_0 + \delta) < \infty.$

Then (under technical conditions) the MPLE $\hat{\beta}_N$ is $\sqrt{a_N}$ -consistent for $\beta = \beta_0$.

• (*Erdős-Renyi Graphs*) Suppose $G_N \sim \mathcal{G}(N, p_N)$ with $p_N \gg \frac{\log N}{N}$. Then $\hat{\beta}_N$ is $\sqrt{\frac{1}{p_N}}$ consistent if $\beta < 1$, and \sqrt{N} consistent if $\beta > 1$.

Consistency of the MPLE: Our Results

Theorem (B.-Mukherjee (2015))

Let $\sup_{N\geq 1} ||J_N|| < \infty$, and $\beta_0 > 0$ be fixed. Suppose $\{a_N\}_{N\geq 1}$ is a sequence of positive reals diverging to ∞ such that

 $0 < \liminf_{\delta \to 0} \liminf_{N \to \infty} \frac{1}{a_N} F_N(\beta_0 - \delta) \le \lim_{\delta \to 0} \limsup_{N \to \infty} \frac{1}{a_N} F_N(\beta_0 + \delta) < \infty.$

Then (under technical conditions) the MPLE $\hat{\beta}_N$ is $\sqrt{a_N}$ -consistent for $\beta = \beta_0$.

- (*Erdős-Renyi Graphs*) Suppose $G_N \sim \mathcal{G}(N, p_N)$ with $p_N \gg \frac{\log N}{N}$. Then $\hat{\beta}_N$ is $\sqrt{\frac{1}{p_N}}$ consistent if $\beta < 1$, and \sqrt{N} consistent if $\beta > 1$.
- (*Regular Graphs*) Suppose G_N is a sequence of d_N -regular graphs. If $d_N \to \infty$, then $\hat{\beta}_N$ is $\sqrt{\frac{N}{d_N}}$ consistent if $\beta < 1$, and \sqrt{N} consistent if $\beta > 1$.

Numerical examples

MPLE in Random Graph

Figure: The MPLE and the 1-standard deviation error bar in an Ising model on $G_N \sim \mathcal{G}(N, p(N))$ with N = 2000 and $p(N) = N^{-\frac{1}{3}}$, averaged over 100 repetitions for a sequence of values of $\beta \in [0, 2]$.

When Consistent Estimation is Impossible?

Theorem (B.-Mukherjee (2015))

Suppose the log-normalizing constant $F_N(\beta_0) = O(1)$. Then there does not exist any consistent sequence of estimators in the interval $[0, \beta_0]$.

When Consistent Estimation is Impossible?

Theorem (B.-Mukherjee (2015))

Suppose the log-normalizing constant $F_N(\beta_0) = O(1)$. Then there does not exist any consistent sequence of estimators in the interval $[0, \beta_0]$.

- (*Dense Graphs*) Suppose G_N is a sequence of dense graphs converging a graphon W with maximum eigenvalue of $\lambda_1(W)$ (Borgs et al. (2008)).
 - Then $\hat{\beta}_N$ is *inconsistent* for $\beta < \frac{1}{\lambda_1(W)}$, and \sqrt{N} consistent for $\beta > 1$.
 - Moreover, there exists no sequence of consistent estimators for $\beta < \frac{1}{\lambda_1(W)}$, where $\lambda_1(W)$ denotes the largest eigenvalue of W.

Example: Erdős-Renyi Graphs

Main Results

Non-Estimation in Ising models

Figure: The power of the MP-test for the Ising model on an Erdős-Rényi random graph $\mathcal{G}(N,p)$ as a function of p and β , with N = 500. In this case, the limiting graphon is $W \equiv p$, and $\lambda_1(W) = p$. Note the phase transition curve $\beta(p) = \frac{1}{p}$ above which the MP-test has power 1.

US Presidential Elections Data

- The dataset consists of political colors of the 48 states in the continental US (excluding Alaska, Hawai, and Washington D.C.) in the last 26 presidential elections held during 1912-2012.
- Each state is assigned 1 for Democratic (colored blue) and -1 for Republican (colored red).
- The vertices of the *neighborhood graph* are the states and there is an edge between two states if they share a border.

1924 Elections: $\hat{\beta} = 2.84$ 1992 Elections: $\hat{\beta} = 0.37$ 2012 Elections: $\hat{\beta} = 0.96$

