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Preliminaries
Main Results

The Ising Model

The data is a vector of dependent ±1 random variables

σ = (σ1, σ2, · · · , σN ).

The dependence between the coordinates of σ are modeled by a
one-parameter exponential family on SN := {−1, 1}N

Pβ(σ = τ) = 2−N exp

{
1

2
βHN (τ)− FN (β)

}
.

Here

β > 0 is the natural parameter (inverse temperature),
the sufficient statistic is a quadratic form:

HN (τ) = τ ′JNτ =
∑

1≤i,j≤N

JN (i, j)τiτj

for a symmetric matrix JN with zeros on the diagonals.
FN (β) is the log-normalizing constant which is determined by the
condition

∑
τ∈SN

P{σ = τ} = 1.
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The Problem

Goal: We want to estimate the parameter β given one realization
from the model.

Maximum Likelihood Estimation: Very difficult due to appearance
of an intractable normalizing constant FN (β) in the likelihood.

Maximum Pseudo-Likelihood Estimation (MPLE): The
pseudo-likelihood is obtained by multiplying all of the conditional
likelihoods (Besag 1974).

The distribution of σi given {σj , j 6= i} takes the values +1 and

−1 with probabilities eβmi

eβmi+e−βmi
and e−βmi

eβmi+e−βmi
respectively,

where mi =
∑n
j=1 JN (i, j)σj .

The value of β which maximizes the pseudo-likelihood is the
pseudo-likelihood estimator β̂N .
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Consistency of the MPLE
Non-Estimation in Ising models

Consistency of the MPLE

Theorem (Chatterjee (2007))

If supN ||JN || <∞ and

lim inf
N→∞

1

N
FN (β0) > 0,

then the MPLE β̂N is
√
N -consistent at β = β0.
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Consistency of the MPLE: Our Results

Theorem (B.-Mukherjee (2015))

Let supN≥1 ||JN || <∞, and β0 > 0 be fixed. Suppose {aN}N≥1 is a
sequence of positive reals diverging to ∞ such that

0 < lim
δ→0

lim inf
N→∞

1

aN
FN (β0 − δ) ≤ lim

δ→0
lim sup
N→∞

1

aN
FN (β0 + δ) <∞.

Then (under technical conditions) the MPLE β̂N is
√
aN -consistent

for β = β0.

(Erdős-Renyi Graphs) Suppose GN ∼ G(N, pN ) with pN � logN
N .

Then β̂N is
√

1
pN

consistent if β < 1, and
√
N consistent if β > 1.

(Regular Graphs) Suppose GN is a sequence of dN -regular

graphs. If dN →∞, then β̂N is
√

N
dN

consistent if β < 1, and
√
N consistent if β > 1.
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Numerical examples
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Figure: The MPLE and the 1-standard deviation error bar in an Ising model on

GN ∼ G(N, p(N)) with N = 2000 and p(N) = N−
1
3 , averaged over 100 repetitions

for a sequence of values of β ∈ [0, 2].
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When Consistent Estimation is Impossible?

Theorem (B.-Mukherjee (2015))

Suppose the log-normalizing constant FN (β0) = O(1). Then there does
not exist any consistent sequence of estimators in the interval [0, β0].

(Dense Graphs) Suppose GN is a sequence of dense graphs
converging a graphon W with maximum eigenvalue of λ1(W )
(Borgs et al. (2008)).

Then β̂N is inconsistent for β < 1
λ1(W )

, and
√
N consistent for

β > 1.
Moreover, there exists no sequence of consistent estimators for
β < 1

λ1(W )
, where λ1(W ) denotes the largest eigenvalue of W .
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Example: Erdős-Renyi Graphs

β

Edge probability (p)

β
(p)

=
1p

Ising model on random graph G(N, p)

Figure: The power of the MP-test for the Ising model on an Erdős-Rényi random
graph G(N, p) as a function of p and β, with N = 500. In this case, the limiting
graphon is W ≡ p, and λ1(W ) = p. Note the phase transition curve β(p) = 1

p

above which the MP-test has power 1.
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US Presidential Elections Data

The dataset consists of political colors of the 48 states in the
continental US (excluding Alaska, Hawai, and Washington D.C.)
in the last 26 presidential elections held during 1912-2012.

Each state is assigned 1 for Democratic (colored blue) and -1 for
Republican (colored red).

The vertices of the neighborhood graph are the states and there is
an edge between two states if they share a border.
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1924 Elections: β̂ = 2.84
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