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Estimation 

•  Signal processing 
•  Quality control 
•  Control theory 

Fundamental problem in many engineering apps. 
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Estimation 

•  Data = i.i.d. samples from  
•  θ  = low-dimensional parameter 
•  n  = large value compared to dim(θ) 

Classical setting 
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Estimation 

Classical setting 
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E.g.: Learn θ in                     from i.i.d. ℓℓℓ εθ += ,xy nxy 0)},{( =ℓℓℓ
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In this talk… 

Data = trajectory of a stochastic diff. eq. (SDE) 
 
 
 
 
θ =  very large graph, G = (V, E)  
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In this talk… 

Data = trajectory of a stochastic diff. eq. (SDE) 
 
 
 
 
θ =  very large graph 
 

 
 
 
T =  minimum value to recover graph with prob. ≈ 1 
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E.g.: G = interaction 
between components 
of x 
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Graphs & SDEs 
Example: Gene regulatory networks 
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Yeast 



Example: Gene regulatory networks 3 

Yeast ≈ 6000 genes 
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Example: Gene regulatory networks 3 

Yeast ≈ 800 genes for 
cell cycle 

[Spellman 98] 
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Example: Gene regulatory networks 3 

Yeast E.g. of cell cycle gene net. 
[Li et al. 04] 

Nodes = genes 
Edges = interaction (activation/repression) 



Example: Gene regulatory networks 3 

Gene expression t. series 
[Stanford yeast cell cycle 

database ] 

Yeast 

xi(t) = ith  gene expression level at time t 



Example: Gene regulatory networks 3 

Yeast Model 

Data 

Graph 

E.g.: Chen 05 et al. 
uses SDEs to study 
yeast cell-cycle 
 



Example: Gene regulatory networks 3 

Gene interaction 
ó 

Bio-chemical reactions 

Yeast 
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4 Example: Gene regulatory networks 

Simple model for 
gene interaction 



Learning supp(θ) 
 
 

Learning network of gene interactions  

4 Example: Gene regulatory networks 
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Problem: 
 
1.  How to fit this (or other SDEs models) to data? 
2.  How much data do we need? 

4 Example: Gene regulatory networks 
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Our problem 5 

x(t){ }t=0
T

Alg GG =ˆ
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Our problem 6 

Quantity of interest 

{ }δ−>== 1)ˆ(:inflg, GGTT GA P ~ 0 ?? 

{ }δ−>== 1)ˆ(:inflg, GGTT GA P ~ p ?? 

Fact: Learning a sparse θ in                      from 
 
i.i.d. pairs              is possible if n ~ log p  

ℓℓℓ εθ += ,xy

nxy 0},{ =ℓℓℓ



Our problem 6 

Quantity of interest 

{ }δ−>== 1)ˆ(:inflg, GGTT GA P ~ 0 ?? 

{ }δ−>== 1)ˆ(:inflg, GGTT GA P ~ p ?? 

{ }δ−>== 1)ˆ(:inflg, GGTT GA P ~ log p ?? 



Linear SDEs & graphical models 7 

In linear SDEs, 
 
 
 
 
 
θ encodes the interaction among components of x 

dxi (t) = θij x j (t)dt
j=1

p

∑ +dbi (t)



Ĝ

{x(t)}t=0
T

0=t Tt = Algorithm 
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Learning SDEs is related to the broader problem of 
learning a graphical model from data 
 

Linear SDEs & graphical models 



Prior work: Graphical Models 

Stationary distribution x(t) ~ N(0,Σ)
θΣ+Σθ T + I = 0

dxi (t) = θij x j (t)dt
j=1

p

∑ +dbi (t)

  9 



Prior work: Graphical Models 

Stationary distribution 

Given n i.i.d samples from N(0, Σ ) estimate 

)(suppĜ 1−Σ=

dxi (t) = θij x j (t)dt
j=1

p

∑ +dbi (t)

x(t) ~ N(0,Σ)
θΣ+Σθ T + I = 0

  9 



Prior work: Graphical Models 

Learning Gaussian graphical models  
•  Friedman, Hastie, & Tibshirani 08 
•  Meinshausen & Buhlmann 06 

Given n i.i.d samples from N(0, Σ ) estimate 

)(suppĜ 1−Σ=

10 



Prior work: Graphical Models 

Why is our work different? 
•      has less information than 
•   We have {x(t)}, not i.i.d. samples 
Σ θ

10 

Given n i.i.d samples from N(0, Σ ) estimate 

)(suppĜ 1−Σ=



Prior work: Graphical Models 

   has less information than   Σ θ

10 

Given n i.i.d samples from N(0, Σ ) estimate 
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Prior work: Graphical Models 

The system of SDEs is linear in θ 

11 
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j
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Prior work: Graphical Models 

The system of SDEs is linear in θ 

Given Y, X satisfying  Y = X θi + ε  estimate 
∂i = supp(θi )

11 

dxi (t) = θij x j (t)dt
j
∑ +dbi (t)

Y Xθi ε=



Prior work: Graphical Models 12 

L1 – regularized least squares 
•   Tibshirani 96 
•   Zhao & Yu 06 
•   Wainwright 09 

Given Y, X satisfying  Y = X θi + ε  estimate 
∂i = supp(θi )



Prior work: Graphical Models 12 

Why is our work different? 
•   Rows of Y and X obtained from {x(t)} are 
   not i.i.d. 

Given Y, X satisfying  Y = X θi + ε  estimate 
∂i = supp(θi )



Underlying challenge: 
Spaced data or correlation? 

# samples correlation 
η decreases ↑ ↑ 
η increases ↓ ↓ 

η

0=t Tt =

η

13 

x() = x(η)



Prior work: SDEs 14 

Start with 

Compute the likelihood function 

Estimate θ from 

ML methods for SDEs 
•   Basawa & Rao 80 
•   Kutoyants 04 

argmax
Θ∈ℜp×p

L(Θ; x(t){ }
T

t=0
)

L(Θ; x(t){ }
T

t=0
)

dxi (t) = θij x j (t)dt
j=1

p

∑ +dbi (t)



Prior work: SDEs 15 

Start with 

Compute approx. likelihood function 

Estimate θ from { } ))(;(argmax 1
nxL

pp
=

ℜ∈Θ

Θ
×

ℓℓη

{ } ))(;( 1
nxL =Θ ℓℓη

dxi (t) = θij x j (t)dt
j=1

p

∑ +dbi (t)

Approximate ML methods for sampled SDEs 
•   Dacunha-Castelle & Florens 86 
•   Pederson 95 
•   AitSahalia 02 



argmax
Θ∈ℜp×p

L(Θ; x(t){ }
T

t=0
)

L(Θ; x(t){ }
T

t=0
)

dxi (t) = θij x j (t)dt
j=1

p

∑ +dbi (t)

Prior work: SDEs 15 

Start with 

Compute the likelihood function 

Estimate θ from 

Why is this work different? 
•   Focus is on low dimensional setting 
•   ML is not a selection algorithm (θ ≠ G) 
•   Guarantees only hold asymptotically in T 



The algorithm 

dx1 = θ11g1(x3)+θ12g2 (x1, x2 )( )dt +db1

g2

g1

x1
x1

x2

x3 θ11

θ12

Consider the non-linear SDE 
dxi (t) = θijgj (x(t))dt

j=1

p '

∑ +dbi (t)

17 

Example 



The algorithm 18 

The SDE is linear in θ : use a regression 
dxi (t) = θijgj (x(t))dt

j=1

p '

∑ +dbi (t)



The algorithm 18 

The SDE is linear in θ : use a regression 

Naïve derivation 

dxi (t) = θijgj (x(t))dt
j=1

p '

∑ +dbi (t)

θ̂i = argmin
Θ∈R p

dxi (t)− Θ jgj (x(t))dt
j=1

p '

∑
%

&
''

(

)
**

2

0

T

∫ +λ Θ
1



The algorithm: RLS(λ) 18 

argmin
Θ∈R p

1
2T

Θ jgj (x)
j=1

p '

∑
$
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2
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T

∫ dt − 1
T

Θ jgj (x)
j=1

p '

∑
0

T

∫ dxi +λ Θ
1

Doing the math right 

The SDE is linear in θ : use a regression 
dxi (t) = θijgj (x(t))dt

j=1

p '

∑ +dbi (t)

θ̂i = argmin
Θ∈R p

dxi (t)− Θ jgj (x(t))dt
j=1

p '
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The algorithm: RLS(λ) 19 

θ̂i = argmin
Θ∈R p

1
2T

Θ jgj (x)
j=1

p '

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

0

T

∫ dt − 1
T

Θ jgj (x)
j=1

p '

∑
0

T

∫ dxi +λ Θ
1

TRLS,G = inf T :P(supp(θ̂ ) = supp(θ ))>1−δ{ }

What is the sample-complexity? 

Li(⇥; {x(t)}Tt=0)



Characterization of TRLS	
20 

dxi = −mxidt + (x j − xi )dt
j∈∂i
∑ +dbi

Given G = (V, E) define 

Let G be sparse of maximum degree Δ 

If              then 

Theorem 

Δ>>mp,

pmCTpmC G log)('log)( 2
,RLS Δ<<Δ

-Bento, Ibrahimi, Montanari, Proceedings of Neural Information Processing Systems (NIPS), 2010 
-Bento, Ibrahimi, Montanari, IEEE International Symposium on Information Theory (ISIT), 2011 



Characterization of TRLS	
21 

Given G = (V, E) define 

Now, G can be dense (Δ ~ p) 

dxi = −mxidt + (x j − xi )dt
j∈∂i
∑ +dbi

If              then 

Theorem 

1, >>mp

mpCTCmp G ',RLS <<

-Bento, Ibrahimi, Montanari, IEEE Transactions in information Theory, 2013 
-Bento, Ibrahimi, Montanari, IEEE International Symposium on Information Theory (ISIT), 2011 



General behaviour 

•  T ~ log p:     Large sparse systems can be          
      learned from few samples 

 
•  T ~ m:          Fast systems are harder to learn  

m 

T Upper 
bound 

Lower 
bound ? ? 

24 



General characterization of TRLS	
23 

General theorem for 
requires some assumptions     
 
In particular, it requires assumptions similar to 
the ones in Zhao & Yu 06 for sparse linear regression 

•  Entries smallest value is lower bounded 
•  Strong stability assumption 
•  Restricted convexity assumption 
•  Irrepresentable condition 
 
 
 

dxi (t) = θij x j (t)dt
j=1

p

∑ +dbi (t)



Important ideas behind proof	 23 

1) Work with discretized SDE and take limits 
2) Proof structure similar to Zhao & Yu 06 requires 
    two new concentration bounds  
 
 
 
 
 
unlike in Zhao & Yu 06, G and Q are not of the form 
C†Z for a random vector Z with i.i.d. entries but are 
of the form Z†RZ for some matrix R. 
 

P
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0
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2

Q̂ijk =
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d✓ijd✓ik

P
⇣���Ĝij
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⌘
 C1e

�C2n⌘✏
2

Ĝij =
dL(✓i; {x(k⌘)}nk=0)

d✓ij



Follow up work 

•  Autoregressive processes 
 
 
 
Bolstad et al. 2011 (group Lasso + tailored 
incoherence condition) 
 
•  Hidden variables (observe x) 

 
A. Jalali & S. Sanghavi 2012 (only want      + L1 + 
nuclear norm penalties + two incoherence cond.  ) 

 

26 

x(t+ 1) = ⇥0x(t) +⇥1h(t) + u1(t)

h(t+ 1) = ⇥2x(t) +⇥3h(t) + u2(t)

x(t+ 1) =
k�1X

r=0

⇥(r)x(t� r) + u(t)

⇥0



Follow up work 

•  Non-parametric 

Ruttor et al. 2013 (estimate drift + sampled paths + 
Gaussian Process + approximate EM) 
 
 
Jung et al. 2014 (learn dependencies in GP + 
Blackman-Tukey estimator + group Lasso OR 
graphical Lasso + thresholding); (IT lower-bound ) 
 
 
 
 
 
•  Estimate AR (no structural learning) with 

conditional ind. Constraints 

Songsiri et al. 2010 (SDP, no guarantees) 
 
 
 
 

 
 
 
 
 

27 

(k, l) /2 E i↵ [S�1(!)]k,l = 0 8 ! 2 [0, 1)

S(!) =
1X

i=�1
R(t)e�j2⇡t!;R(t) = E(x(t)x†(0))

dx(t) = F (x(t))dt+D

1/2db(t)



Extension: 
Non-linear SDEs 

1.  Algorithm analysis only applies for linear SDEs 

2.  Some non-linear SDEs can be described as a 
linear combination of a set of basis functions 

28 



Extension: 
Non-linear SDEs 

1.  Algorithm analysis only applies for linear SDEs 

2.  Some non-linear SDEs can be described as a 
linear combination of a set of basis functions 

Open problem 
Does the same analysis hold for non-linear SDEs? 

28 



Numerical experiment 
Learning mass-spring networks 

29 

dv(t) = −γv(t)dt −∇U(q(t))dt +σdb(t)
dq(t) = v(t)dt

U(q) ≡ 1
2

Cij
0 q(i) − q( j ) −Dij

0( )
(i, j )
∑

2



29 Numerical experiment 
Learning mass-spring networks 

vi (t){ }i∈[ p] , qi (t)− qj (t){ }i, j∈[ p] ,
qi (t)− qj (t)
qi (t)− qj (t)

#
$
%

&%

'
(
%

)%i, j∈[ p]

Drift = linear combination of basis functions 

dv(t) = −γv(t)dt −∇U(q(t))dt +σdb(t)
dq(t) = v(t)dt

U(q) ≡ 1
2

Cij
0 q(i) − q( j ) −Dij

0( )
(i, j )
∑

2





30 Numerical experiment 
Learning mass-spring networks 

Sample-complexity for learning regular graphs of 
different sizes p 

TRLS  ~ log p 



30 Numerical experiment 
Learning mass-spring networks 

Sample-complexity for learning regular graphs of 
different sizes p 

TRLS  ~ log p (TRLS  > C log p) 

By the 
general 

lower bound 



31 Summary 

1.  For fast (large m) linear SDEs, RLS has optimal        
sample complexity (log p or p) 

2.  Empirical results suggest RLS has optimal scaling 
of TRLS with p for sparse non-linear SDEs 

3.  Upper bound on TRLS suggests that performance 
of RLS degrades for slow (small m) linear SDEs 

4.  For fast linear SDEs TRLS ~ between m and m2 

 



Thank you 


