Learning Stochastic Differential Equations

José Bento

Join work with Andrea Montanari and Morteza Ibraimi

NIPS 2015

1

? θ≈θ̂

1

Fundamental problem in many engineering apps.

- Signal processing
- Quality control
- Control theory

1

Classical setting

- Data = i.i.d. samples from $P_{\theta}(x)$
- θ = low-dimensional parameter
- $n = \text{large value compared to } \dim(\theta)$

1

Classical setting

E.g.: Learn θ in $y_{\ell} = \langle x_{\ell}, \theta \rangle + \varepsilon_{\ell}$ from i.i.d. $\{(y_{\ell}, x_{\ell})\}_{\ell=0}^{n}$

Data = trajectory of a stochastic diff. eq. (SDE)

Data = trajectory of a stochastic diff. eq. (SDE)

 $\{x(t)\}_{t=0}^T : \quad dx(t) = F(x(t);\theta)dt + db(t)$

Data = trajectory of a stochastic diff. eq. (SDE)

$$\{x(t)\}_{t=0}^T : \quad dx(t) = F(x(t);\theta)dt + db(t)$$

 θ = very large graph

Data = trajectory of a stochastic diff. eq. (SDE)

$$\{x(t)\}_{t=0}^T : \quad dx(t) = F(x(t);\theta)dt + db(t)$$

 θ = very large graph, G = (V, E)

E.g.: *G* = interaction between components of *x*

$$dx_{i}(t) = -mx_{i}(t)dt + \sum_{j \in \partial i} (x_{j}(t) - x_{i}(t))dt + db_{i}(t)$$

Data = trajectory of a stochastic diff. eq. (SDE)

$$\{x(t)\}_{t=0}^T : \quad dx(t) = F(x(t);\theta)dt + db(t)$$

 θ = very large graph

E.g.: *G* = interaction between components of *x*

T = minimum value to recover graph with prob. \approx 1

Graphs & SDEs Example: Gene regulatory networks

Yeast

'18srRnaa'	'biod5'	'THR5'	'YER022w5'	'YAL058W/CNE1'	'YAL042W/'	'YAL031C/FUN21'
'18srRnab'	'biodm'	'THR3'	'YER022wM'	'YAL058C-a/'	'YAL043C-a/'	'YAL030W/
'18srRnac'	'biod3'	'TRP5'	'YER022w3'	'YAL056W/'	'YAL041W/CDC24'	SNC1_ex1'
'18srRnad'	'cre5'	'TRPM'	'YAL069W/'	'YAL055W/'	'YAL040C/CLN3'	'YAL030W/
'18srRnae'	'crem'	'TRP3'	'YAL067C/SEO1'	'YAL054C/ACS1'	'YAL039C/CYC3'	SNC1_ex2'
'25srRnaa'	'cre3'	'DAP5'	'YAL066W/'	'YAL053W/'	'YAL038W/CDC19'	'YAL029C/MYO4'
'25srRnab'	'25srRnad'	'DAPM'	'YAL065C/'	'YAL051W/'	'YAL037W/'	'YAL028W/'
'25srRnac'	'25srRnae'	'DAP3'	'YAL065C-a/'	'YAL049C/'	'YAL036C/'	'YAL027W/'
'BIOB5'	'LYSA5'	'YFL039C5'	'YAL064W/FLO9_i'	'YAL048C/'	'YAL035W/FUN12'	'YAL026C/DRS2'
'biobm'	'LYSAM'	'YFL039CM'	'YAL063C/'	'YAL047C/'	'YAL034W-a/'	'YAL025C/MAK16'
'biob3'	'LYSA3'	'YFL039C3'	'YAL062W/GDH3'	'YAL046C/'	'YAL035C-a/'	'YAL024C/LTE1'
'bioc5'	'PHE5'	'YER148w5'	'YAL061W/'	'YAL045C/'	'YAL034C/FUN19'	'YAL023C/PMT2'
'biocm'	'PHEM'	'YER148wM'	'YAL060W/'	'YAL044C/GCV3'	'YAL033W/FUN53'	'YAL022C/'
'bioc3'	'PHE3'	'YER148w3'	'YAL059W/SIM1'	'YAL043C/PTA1'	'YAL032C/FUN20'	'YALO21C/CCR4'

Yeast

≈ 6000 genes

'18srRnaa'	'biod5'	'THR5'	'YER022w5'	'YAL058W/CNE1'	'YAL042W/'	'YAL031C/FUN21'
'18srRnab'	'biodm'	'THR3'	'YER022wM'	'YAL058C-a/'	'YAL043C-a/'	'YAL030W/
'18srRnac'	'biod3'	'TRP5'	'YER022w3'	'YAL056W/'	'YAL041W/CDC24'	SNC1_ex1'
'18srRnad'	'cre5'	'TRPM'	'YAL069W/'	'YAL055W/'	'YAL040C/CLN3'	'YAL030W/
'18srRnae'	'crem'	'TRP3'	'YAL067C/SEO1'	'YAL054C/ACS1'	'YAL039C/CYC3'	SNC1_ex2'
'25srRnaa'	'cre3'	'DAP5'	'YAL066W/'	'YAL053W/'	'YAL038W/CDC19'	'YAL029C/MYO4'
'25srRnab'	'25srRnad'	'DAPM'	'YAL065C/'	'YAL051W/'	'YAL037W/'	'YAL028W/'
'25srRnac'	'25srRnae'	'DAP3'	'YAL065C-a/'	'YAL049C/'	'YAL036C/'	'YAL027W/'
'BIOB5'	'LYSA5'	'YFL039C5'	'YAL064W/FLO9_i'	'YAL048C/'	'YAL035W/FUN12'	'YAL026C/DRS2'
'biobm'	'LYSAM'	'YFL039CM'	'YAL063C/'	'YAL047C/'	'YAL034W-a/'	'YAL025C/MAK16'
'biob3'	'LYSA3'	'YFL039C3'	'YAL062W/GDH3'	'YAL046C/'	'YAL035C-a/'	'YAL024C/LTE1'
'bioc5'	'PHE5'	'YER148w5'	'YAL061W/'	'YAL045C/'	'YAL034C/FUN19'	'YAL023C/PMT2'
'biocm'	'PHEM'	'YER148wM'	'YAL060W/'	'YAL044C/GCV3'	'YAL033W/FUN53'	'YAL022C/'
'bioc3'	'PHE3'	'YER148w3'	'YAL059W/SIM1'	'YAL043C/PTA1'	'YAL032C/FUN20'	'YAL021C/CCR4'

Yeast

≈ 800 genes for cell cycle [Spellman 98]

Nodes = genes Edges = interaction (activation/repression)

Yeast

Gene expression t. series [Stanford yeast cell cycle database]

 $x_i(t) = i^{\text{th}}$ gene expression level at time t

Yeast

E.g.: Chen 05 et al. uses SDEs to study yeast cell-cycle

3

$$A + B \stackrel{k',k}{\longleftrightarrow} C + D$$
$$dx_A = \left(k' x_C x_D - k x_A x_B\right) dt + db$$

Yeast

Simple model for
gene interaction
$$dx_{i} = \begin{bmatrix} \theta_{i,0} & \theta_{i,1} & \theta_{i,2} & \dots & \theta_{i,12} & \theta_{i,23} & \dots \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ x_{2} \\ \dots \\ x_{1}x_{2} \\ x_{2}x_{3} \\ \dots \end{bmatrix} dt + db_{i}$$

 $\theta_{i,11} \neq 0 \Leftrightarrow \mathbf{2}$ and $\mathbf{3}$ interact to regulate *i*

$$dx_{i} = \begin{bmatrix} \theta_{i,0} & \theta_{i,1} & \theta_{i,2} & \dots & \theta_{i,12} & \theta_{i,23} & \dots \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ x_{2} \\ \dots \\ x_{1}x_{2} \\ x_{2}x_{3} \\ \dots \end{bmatrix} dt + db_{i}$$

Learning $supp(\theta)$

Learning network of gene interactions

$$dx_{i} = \begin{bmatrix} \theta_{i,0} & \theta_{i,1} & \theta_{i,2} & \dots & \theta_{i,12} & \theta_{i,23} & \dots \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ x_{2} \\ \dots \\ x_{1}x_{2} \\ x_{2}x_{3} \\ \dots \end{bmatrix} dt + db_{i}$$

Problem:

- 1. How to fit this (or other SDEs models) to data?
- 2. How much data do we need?

$$T_{Alg,G} = \inf \left\{ T : \mathbf{P}(\hat{G} = G) > 1 - \delta \right\}$$

$$T_{Alg,G} = \inf \{ T : \mathbf{P}(\hat{G} = G) > 1 - \delta \} \sim \mathbf{0} ??$$

$$T_{Alg,G} = \inf \left\{ T : \mathbf{P}(\hat{G} = G) > 1 - \delta \right\} \sim 0 ??$$

$$T_{Alg,G} = \inf \left\{ T : \mathbf{P}(\hat{G} = G) > 1 - \delta \right\} \sim p ??$$

Quantity of interest

$$T_{Alg,G} = \inf \left\{ T : \mathbf{P}(\hat{G} = G) > 1 - \delta \right\} \sim 0 ??$$

$$T_{Alg,G} = \inf \left\{ T : \mathbf{P}(\hat{G} = G) > 1 - \delta \right\} \sim p ??$$

Fact: Learning a sparse θ in $y_{\ell} = \langle x_{\ell}, \theta \rangle + \varepsilon_{\ell}$ from

i.i.d. pairs $\{y_{\ell}, x_{\ell}\}_{\ell=0}^{n}$ is possible if $n \sim \log p$

$$T_{Alg,G} = \inf \left\{ T : \mathbf{P}(\hat{G} = G) > 1 - \delta \right\} \sim 0 ??$$

$$T_{Alg,G} = \inf \left\{ T : \mathbf{P}(\hat{G} = G) > 1 - \delta \right\} \sim p ??$$

$$T_{Alg,G} = \inf \left\{ T : \mathbf{P}(\hat{G} = G) > 1 - \delta \right\} \sim \log p ??$$

Linear SDEs & graphical models

In linear SDEs,

$$dx_i(t) = \sum_{j=1}^p \theta_{ij} x_j(t) dt + db_i(t)$$

 θ encodes the interaction among components of x

Linear SDEs & graphical models

Learning SDEs is related to the broader problem of learning a graphical model from data

$$\mathrm{d}x_i(t) = \sum_{j=1}^p \theta_{ij} x_j(t) \mathrm{d}t + \mathrm{d}b_i(t)$$

Stationary distribution

 $x(t) \sim N(0, \Sigma)$ $\theta \Sigma + \Sigma \theta^{T} + I = 0$

$$\mathrm{d}x_i(t) = \sum_{j=1}^p \theta_{ij} x_j(t) \mathrm{d}t + \mathrm{d}b_\mathrm{i}(t)$$

Stationary distribution

 $x(t) \sim N(0, \Sigma)$ $\theta \Sigma + \Sigma \theta^{T} + I = 0$

Given *n* i.i.d samples from $N(0, \Sigma)$ estimate $\hat{G} = \operatorname{supp}(\Sigma^{-1})$

Given *n* i.i.d samples from $N(0, \Sigma)$ estimate $\hat{G} = \operatorname{supp}(\Sigma^{-1})$

Learning Gaussian graphical models

- Friedman, Hastie, & Tibshirani 08
- Meinshausen & Buhlmann 06

Given *n* i.i.d samples from $N(0, \Sigma)$ estimate $\hat{G} = \operatorname{supp}(\Sigma^{-1})$

Why is our work different?

- Σ has less information than θ
- We have $\{x(t)\}$, not i.i.d. samples

Given *n* i.i.d samples from $N(0, \Sigma)$ estimate $\hat{G} = \operatorname{supp}(\Sigma^{-1})$

Σ has less information than θ

$$\Theta_1 = \begin{bmatrix} -2 & 1 & 0 \\ -1 & -2 & 1 \\ 0 & -1 & -2 \end{bmatrix} \qquad \Theta_2 = \begin{bmatrix} -2 & -1 & -1 \\ 1 & -2 & -1 \\ 1 & 1 & -2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 1/4 & 0 & 0 \\ 0 & 1/4 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$$

The system of SDEs is linear in $\boldsymbol{\theta}$

$$dx_{i}(t) = \sum_{j} \theta_{ij} x_{j}(t) dt + db_{i}(t)$$
$$Y = X \theta_{i} \qquad \varepsilon$$

$$Y = \begin{bmatrix} \Delta x_i^{(1)} \\ \vdots \\ \Delta x_i^{(n)} \end{bmatrix} \qquad \qquad X = \begin{bmatrix} x_1^{(1)} & \cdots & x_p^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(n)} & \cdots & x_p^{(n)} \end{bmatrix}$$

The system of SDEs is linear in $\boldsymbol{\theta}$

$$dx_{i}(t) = \sum_{j} \theta_{ij} x_{j}(t) dt + db_{i}(t)$$
$$Y = X \theta_{i} \qquad \varepsilon$$

Given *Y*, *X* satisfying $Y = X \theta_i + \varepsilon$ estimate $\partial i = \operatorname{supp}(\theta_i)$

Given *Y*, *X* satisfying $Y = X \theta_i + \varepsilon$ estimate $\partial i = \operatorname{supp}(\theta_i)$

L₁ - regularized least squares

- Tibshirani 96
- Zhao & Yu 06
- Wainwright 09

Given *Y*, *X* satisfying $Y = X \theta_i + \varepsilon$ estimate $\partial i = \operatorname{supp}(\theta_i)$

Why is our work different?

• Rows of *Y* and *X* obtained from {*x*(*t*)} are not i.i.d.

Underlying challenge: Spaced data or correlation?

	# samples	correlation
η decreases	1	1
η increases	\downarrow	\downarrow

Prior work: SDEs

Start with

$$dx_i(t) = \sum_{j=1}^p \theta_{ij} x_j(t) dt + db_i(t)$$

Compute the likelihood function

Estimate θ from

 $\underset{\Theta \in \Re^{p \times p}}{\operatorname{argmax}} L(\Theta; \{x(t)\}_{t=0}^{T})$

ML methods for SDEs

- Basawa & Rao 80
- Kutoyants 04

Prior work: SDEs

Start with

$$\mathrm{d}x_i(t) = \sum_{j=1}^p \theta_{ij} x_j(t) \mathrm{d}t + \mathrm{d}b_i(t)$$

Compute approx. likelihood function $L(\Theta; \{x(\eta \ell)\}_{\ell=1}^n)$

Estimate θ from

 $\underset{\Theta \in \mathbb{R}^{p \times p}}{\operatorname{argmax}} L(\Theta; \{x(\eta \ell)\}_{\ell=1}^n)$

Approximate ML methods for sampled SDEs

- Dacunha-Castelle & Florens 86
- Pederson 95
- AitSahalia 02

Prior work: SDEs

Start with

$$dx_i(t) = \sum_{j=1}^p \theta_{ij} x_j(t) dt + db_i(t)$$

Compute the likelihood function

Estimate θ from

$$\underset{\Theta \in \Re^{p \times p}}{\operatorname{argmax}} L(\Theta; \{x(t)\}_{t=0}^{T})$$

 $L(\Theta; \{x(t)\}_{t=0}^{T})$

Why is this work different?

- Focus is on low dimensional setting
- ML is not a selection algorithm ($\theta \neq G$)
- Guarantees only hold asymptotically in T

The algorithm

Consider the non-linear SDE

$$\mathrm{d}x_i(t) = \sum_{j=1}^{p'} \theta_{ij} g_j(x(t)) \mathrm{d}t + \mathrm{d}b_i(t)$$

Example

 $dx_1 = (\theta_{11}g_1(x_3) + \theta_{12}g_2(x_1, x_2))dt + db_1$

The algorithm

The SDE is linear in θ : use a regression

$$\mathrm{d}x_i(t) = \sum_{j=1}^{p'} \theta_{ij} g_j(x(t)) \mathrm{d}t + \mathrm{d}b_i(t)$$

The algorithm

The SDE is linear in θ : use a regression

$$dx_{i}(t) = \sum_{j=1}^{p'} \theta_{ij}g_{j}(x(t))dt + db_{i}(t)$$
Naïve derivation
$$\hat{\theta}_{i} = \underset{\Theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \int_{0}^{T} \left(dx_{i}(t) - \sum_{j=1}^{p'} \Theta_{j}g_{j}(x(t))dt \right)^{2} + \lambda \|\Theta\|_{1}$$

The algorithm: $RLS(\lambda)$

The SDE is linear in θ : use a regression

$$dx_{i}(t) = \sum_{j=1}^{p'} \theta_{ij}g_{j}(x(t))dt + db_{i}(t)$$

$$\hat{\theta}_{i} = \underset{\Theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \int_{0}^{T} \left(dx_{i}(t) - \sum_{j=1}^{p'} \Theta_{j}g_{j}(x(t))dt \right)^{2} + \lambda \|\Theta\|_{1}$$

$$\underbrace{\operatorname{Doing the math right}}_{\Theta \in \mathbb{R}^{p}} \left(db\right)^{2} \to dt$$

$$\operatorname{argmin}_{\Theta \in \mathbb{R}^{p}} \frac{1}{2T} \int_{0}^{T} \left(\sum_{j=1}^{p'} \Theta_{j}g_{j}(x) \right)^{2} dt - \frac{1}{T} \int_{0}^{T} \sum_{j=1}^{p'} \Theta_{j}g_{j}(x) dx_{i} + \lambda \|\Theta\|_{1}$$

The algorithm: $RLS(\lambda)$

$$\hat{\theta}_{i} = \underset{\Theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \frac{1}{2T} \int_{0}^{T} \left(\sum_{j=1}^{p'} \Theta_{j} g_{j}(x) \right)^{2} dt - \frac{1}{T} \int_{0}^{T} \sum_{j=1}^{p'} \Theta_{j} g_{j}(x) dx_{i} + \lambda \|\Theta\|_{1}$$

$$\mathcal{L}_{i}(\Theta; \{x(t)\}_{t=0}^{T})$$

What is the **sample-complexity**?

$$T_{\text{RLS},G} = \inf \left\{ T : \mathbf{P}(\text{supp}(\hat{\theta}) = \text{supp}(\theta)) > 1 - \delta \right\}$$

Characterization of T_{RLS}

Given G = (V, E) define

$$dx_i = -mx_i dt + \sum_{j \in \partial i} (x_j - x_i) dt + db_i$$

Let G be sparse of maximum degree Δ

Theorem If $p, m \gg \Delta$ then $C(\Delta)m \log p < T_{\text{RLS},G} < C'(\Delta)m^2 \log p$

-Bento, Ibrahimi, Montanari, Proceedings of Neural Information Processing Systems (NIPS), 2010 -Bento, Ibrahimi, Montanari, IEEE International Symposium on Information Theory (ISIT), 2011

Characterization of T_{RLS}

Given G = (V, E) define

$$dx_i = -mx_i dt + \sum_{j \in \partial i} (x_j - x_i) dt + db_i$$

Now, *G* can be dense $(\Delta \sim p)$

Theorem If p, m >> 1 then $Cmp < T_{RLS,G} < C'mp$

-Bento, Ibrahimi, Montanari, IEEE Transactions in information Theory, 2013 -Bento, Ibrahimi, Montanari, IEEE International Symposium on Information Theory (ISIT), 2011

General behaviour

- *T* ~ log *p*: Large sparse systems can be learned from few samples
- $T \sim m$: Fast systems are harder to learn

General characterization of T_{RLS}

General theorem for $dx_i(t) = \sum_{j=1}^{p} \theta_{ij} x_j(t) dt + db_i(t)$ requires some assumptions

In particular, it requires assumptions similar to the ones in Zhao & Yu 06 for sparse linear regression

- Entries smallest value is lower bounded
- Strong stability assumption
- Restricted convexity assumption
- Irrepresentable condition

Important ideas behind proof

 Work with discretized SDE and take limits
 Proof structure similar to Zhao & Yu 06 requires two new concentration bounds

$$\mathbb{P}\left(\left|\hat{G}_{ij}\right| > \epsilon\right) \le C_1 e^{-C_2 n\eta \epsilon^2} \qquad \mathbb{P}\left(\left|\hat{Q}_{ijk} - Q^0\right| > \epsilon\right) \le C_1' e^{-C_2' n\eta \epsilon^2} \\ \hat{G}_{ij} = \frac{\mathrm{d}\mathcal{L}(\theta_i; \{x(k\eta)\}_{k=0}^n)}{\mathrm{d}\theta_{ij}} \qquad \hat{Q}_{ijk} = \frac{\mathrm{d}^2 \mathcal{L}(\theta_i; \{x(k\eta)\}_{k=0}^n)}{\mathrm{d}\theta_{ij} \mathrm{d}\theta_{ik}}$$

unlike in Zhao & Yu 06, G and Q are not of the form $C^{\dagger}Z$ for a random vector Z with i.i.d. entries but are of the form $Z^{\dagger}RZ$ for some matrix R.

Follow up work

• Autoregressive processes

$$x(t+1) = \sum_{r=0}^{k-1} \Theta(r) x(t-r) + u(t)$$

Bolstad et al. 2011 (group Lasso + tailored incoherence condition)

• Hidden variables (observe x)

$$x(t+1) = \Theta_0 x(t) + \Theta_1 h(t) + u_1(t)$$

$$h(t+1) = \Theta_2 x(t) + \Theta_3 h(t) + u_2(t)$$

A. Jalali & S. Sanghavi 2012 (only want Θ_0 + L1 + nuclear norm penalties + two incoherence cond.)

Follow up work

• Non-parametric

Ruttor et al. 2013 (estimate drift + sampled paths + Gaussian Process + approximate EM)

$$\mathrm{d}x(t) = F(x(t))\mathrm{d}t + D^{1/2}\mathrm{d}b(t)$$

Jung et al. 2014 (learn dependencies in GP + Blackman-Tukey estimator + group Lasso OR graphical Lasso + thresholding); (IT lower-bound)

$$(k,l) \notin E \text{ iff } [\mathbf{S}^{-1}(\omega)]_{k,l} = 0 \ \forall \ \omega \in [0,1)$$

$$\mathbf{S}(\omega) = \sum_{i=-\infty}^{\infty} R(t) e^{-j2\pi t\omega}; R(t) = \mathbb{E}(x(t)x^{\dagger}(0))$$

Extension: Non-linear SDEs

1. Algorithm analysis only applies for linear SDEs

2. Some non-linear SDEs can be described as a linear combination of a set of basis functions

Extension: Non-linear SDEs

1. Algorithm analysis only applies for linear SDEs

2. Some non-linear SDEs can be described as a linear combination of a set of basis functions

Open problem

Does the same analysis hold for non-linear SDEs?

$$dv(t) = -\gamma v(t)dt - \nabla U(q(t))dt + \sigma db(t)$$

$$dq(t) = v(t)dt$$

$$U(q) = \frac{1}{2} \sum_{(i,j)} C_{ij}^{0} \left(\left\| q^{(i)} - q^{(j)} \right\| - D_{ij}^{0} \right)^{2}$$

$$dv(t) = -\gamma v(t)dt - \nabla U(q(t))dt + \sigma db(t)$$

$$dq(t) = v(t)dt$$

$$U(q) = \frac{1}{2} \sum_{(i,j)} C_{ij}^{0} \left(\left\| q^{(i)} - q^{(j)} \right\| - D_{ij}^{0} \right)^{2}$$

Drift = linear combination of basis functions

$$\left\{v_{i}(t)\right\}_{i \in [p]}, \left\{q_{i}(t) - q_{j}(t)\right\}_{i,j \in [p]}, \left\{\frac{q_{i}(t) - q_{j}(t)}{\left\|q_{i}(t) - q_{j}(t)\right\|}\right\}_{i,j \in [p]}$$

Sample-complexity for learning regular graphs of different sizes *p*

 $T_{RLS} \sim \log p$

Sample-complexity for learning regular graphs of different sizes *p*

Summary

- 1. For fast (large m) linear SDEs, RLS has optimal sample complexity (log p or p)
- 2. Empirical results suggest RLS has optimal scaling of $T_{\rm RLS}$ with p for sparse non-linear SDEs
- 3. Upper bound on T_{RLS} suggests that performance of RLS degrades for slow (small *m*) linear SDEs
- 4. For fast linear SDEs $T_{\rm RLS} \sim$ between *m* and m^2

Thank you