

Belief Propagation

Conclusion

Bayesian inference of cascades on networks

Alfredo Braunstein

Politecnico di Torino

NIPS Montreal, Dec 2015 A. Ingrosso, J. Bindi, L. Dall'Asta

Alfredo Braunstein Bayesian inference of cascades on networks

Э Politecnico di Torino

Sac

Belief Propagation

 $P(\mathbf{x}^T | \lambda, \mu)$

Conclusion

The patient zero or index case problem

The patient zero or index case problem

INPUT

Belief Propagation

Conclusion

The patient zero or index case problem

The *patient zero* or *index case* problem

INPUT

- A contact network in a community:
 - Hospital wards [Vanhems'13]
 - Livestock Surveillance [Bajardi'12]
 - Many others, e.g.: Sexual contacts [Rocha'10], Proximity in a closed environment [Isella'10]

< □ ト < □ ト < 三 ト < 三)

Belief Propagation

Conclusion

The patient zero or index case problem

The *patient zero* or *index case* problem

INPUT

- A contact network in a community:
 - Hospital wards [Vanhems'13]
 - Livestock Surveillance [Bajardi'12]
 - Many others, e.g.: Sexual contacts [Rocha'10], Proximity in a closed environment [Isella'10]

イロト イポト イヨト イヨト

- An epidemic *snapshot* at time t = T
 - $\circ \ {\sf Susceptible}$
 - Infected
 - Recovered

Belief Propagation

Conclusion

The patient zero or index case problem

The patient zero or index case problem

INPUT

- A contact network in a community:
 - Hospital wards [Vanhems'13]
 - Livestock Surveillance [Bajardi'12]
 - Many others, e.g.: Sexual contacts [Rocha'10], Proximity in a closed environment [Isella'10]
- An epidemic *snapshot* at time t = T
 Susceptible
 - Infected
 - Recovered

OUTPUT

• Find the *source* node at time t = 0

イロト イポト イヨト イヨト

ntroduction	
○●	

Conclusion

The patient zero or index case problem

Related Problems

INPUTS

- Various types of observations: time and space scattered and noisy
- Unknown epidemic "age" *T*
- Time-evolving networks
- Multiple sources

ntroduction	
○●	

Conclusion

The patient zero or index case problem

Related Problems

INPUTS

- Various types of observations: time and space scattered and noisy
- Unknown epidemic "age" *T*
- Time-evolving networks
- Multiple sources

OUTPUTS

- Identifying contagion paths and undiscovered positives
- Predicting of future development of an outbreak
- Reconstructing the contact network (from the observation of multiple cascades)

Conclusion

The SIR model on networks

The (discrete) SIR process on a network

Per-vertex variables $x_i \in \{\mathbb{S}, \mathbf{I}, \mathbf{R}\}$. At each *t*, each **infected** node $x_i^t \in \mathbf{I}$

- attempts **contagion** to susceptible neighbors in $x_i^t \in \mathbb{S}$ with probability λ . If successful, $x_i^{t+1} = \mathbf{I}$
- **attempts recovery** with probability μ . If successful, $x_i^{t+1} = \mathbf{R}$

Conclusion

The SIR model on networks

The (discrete) SIR process on a network

Per-vertex variables $x_i \in \{\mathbb{S}, \mathbf{I}, \mathbf{R}\}$. At each *t*, each infected node $x_i^t \in \mathbf{I}$

- **attempts contagion** to susceptible neighbors in $x_i^t \in \mathbb{S}$ with probability λ . If successful, $x_i^{t+1} = \mathbf{I}$
- **attempts recovery** with probability μ . If successful, $x_i^{t+1} = \mathbf{R}$

SIR Markov Chain

$$P\left(\mathbf{x}^{t+1}|\mathbf{x}^{t}\right) = \prod_{i} P\left(x_{i}^{t+1}|\mathbf{x}^{t}\right),$$

$$P(x_{i}^{t+1} = \mathbb{S}|\mathbf{x}^{t}) = \mathbb{I}[x_{i}^{t} = \mathbb{S}] \prod_{j \in \partial i} (1 - \lambda \mathbb{I}[x_{j}^{t} = \mathbf{I}])$$

$$P(x_{i}^{t+1} = \mathbf{I}|\mathbf{x}^{t}) = \mathbb{I}[x_{i}^{t} = \mathbf{I}](1 - \mu) + \mathbb{I}[x_{i}^{t} = \mathbb{S}](1 - \prod_{j \in \partial i} (1 - \lambda \mathbb{I}[x_{j}^{t} = \mathbf{I}]))$$

$$P(x_{i}^{t+1} = \mathbf{R}|\mathbf{x}^{t}) = \mathbb{I}[x_{i}^{t} = \mathbf{I}]\mu + \mathbb{I}[x_{i}^{t} = \mathbf{R}]$$

Alfredo Braunstein Bayesian inference of cascades on networks

3 Politecnico di Torino

Sac

イロト イポト イヨト イヨト

Introduction	$P(\mathbf{x}^{0} \mathbf{x}^{T})$	Belief Propagation	$P(\mathbf{x}^T \lambda, \mu)$	Conclusion
00	•òoo ′	0000	0000	0
0	000			
The problem and classical approaches				

Approaches

■ Topological centrality measures [Shah'10], [Comin'11], [Zhu'12]

Belief Propagation

 $P\left(\mathbf{x}^{T}|\boldsymbol{\lambda},\boldsymbol{\mu}\right)$

Conclusion

The problem and classical approaches

Approaches

- Topological centrality measures [Shah'10], [Comin'11], [Zhu'12]
- **Bayesian** inference: compute $P(\mathbf{x}^0 | \mathbf{x}^T)$
 - "Brute-Force" Monte Carlo (variant: use soft compatibility [Antulov-Fantulin'14])
 - Naive Bayes
 - Belief Propagation

(日) (周) (王) (王)

ntroduction	Р()
00	••
C	00

P(x⁰|x^T) ○●○○ ○○○ Belief Propagation

 $P\left(\mathbf{x}^{T}|\boldsymbol{\lambda},\boldsymbol{\mu}\right)$

Conclusion

The problem and classical approaches

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution $P\left(\mathbf{x}^{T}|\mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{T}|\mathbf{x}^{0}\right)$
- Marginals P (x_i^T | x⁰) can be computed either with MC or with Dynamical Message-Passing [Lokhov, Mézard & al.'14]

ntroduction		P (x0 x7	Ľ
00		0000	1
C		000	

Conclusion

The problem and classical approaches

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution $P\left(\mathbf{x}^{T}|\mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{T}|\mathbf{x}^{0}\right)$
- Marginals *P*(*x*^{*T*}_{*i*}|**x**⁰) can be computed either with MC or with Dynamical Message-Passing **[Lokhov, Mézard & al.'14]**
- Then maximize over \mathbf{x}^0 the likelihood $P(\mathscr{O}|\mathbf{x}^0) \simeq \prod_i P(\mathbf{x}_i^T = \mathscr{O}_i | \mathbf{x}^0)$

イロト イロト イヨト イヨト

ntroduction	P (x
00	oèo
C	000

Belief Propagation

 $\begin{array}{c} P\left(\mathbf{x}^{T}|\boldsymbol{\lambda},\boldsymbol{\mu}\right) \\ 0000 \end{array}$

Conclusion

The problem and classical approaches

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution $P\left(\mathbf{x}^{T}|\mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{T}|\mathbf{x}^{0}\right)$
- Marginals *P*(*x*^{*T*}_{*i*}|**x**⁰) can be computed either with MC or with Dynamical Message-Passing **[Lokhov, Mézard & al.'14]**
- Then maximize over \mathbf{x}^0 the likelihood $P(\mathscr{O}|\mathbf{x}^0) \simeq \prod_i P(\mathbf{x}_i^T = \mathscr{O}_i | \mathbf{x}^0)$
- Is the approximation accurate? If no, is it because of Naive MF?

・ロト ・ 同ト ・ ヨト ・ ヨト

Р (
0
oc

 $\overset{P(\mathbf{x}^{\mathbf{0}}|\mathbf{x}^{T})}{\underset{0}{\bullet}\overset{0}{\bullet}\overset{0}{\circ}}$

Belief Propagation

 $P\left(\mathbf{x}^{T}|\lambda,\mu\right)$ 0000 Conclusion

The problem and classical approaches

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution $P\left(\mathbf{x}^{T}|\mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{T}|\mathbf{x}^{0}\right)$
- Marginals $P(x_i^T | \mathbf{x}^0)$ can be computed either with MC or with Dynamical Message-Passing **[Lokhov, Mézard & al.'14]**
- Then maximize over \mathbf{x}^0 the likelihood $P(\mathscr{O}|\mathbf{x}^0) \simeq \prod_i P(\mathbf{x}_i^T = \mathscr{O}_i | \mathbf{x}^0)$
- Is the approximation accurate? If no, is it because of Naive MF?
- Note that Naive MF can easily be replaced by e.g.:
 - $P\left(\mathbf{x}^{T}|\mathbf{x}^{0}\right) \simeq \prod_{\langle ij \rangle} \frac{P\left(\mathbf{x}_{i}^{T}, \mathbf{x}_{j}^{T}|\mathbf{x}^{0}\right)}{P\left(\mathbf{x}_{i}^{T}|\mathbf{x}^{0}\right)P\left(\mathbf{x}_{j}^{T}|\mathbf{x}^{0}\right)} \prod_{i} P\left(\mathbf{x}_{i}^{T}|\mathbf{x}^{0}\right) \text{ [Lokhov, Mézard & al.'14, maybe]}$

Alfredo Braunstein Bayesian inference of cascades on networks Politecnico di Torino

・ロト ・ 同ト ・ ヨト ・ ヨト

Р (
0
oc

 $\overset{P(\mathbf{x}^{\mathbf{0}}|\mathbf{x}^{T})}{\underset{0}{\bullet}\overset{0}{\bullet}\overset{0}{\circ}}$

Belief Propagation

 $P\left(\mathbf{x}^{T}|\lambda,\mu\right)$ 0000 Conclusion

The problem and classical approaches

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution $P\left(\mathbf{x}^{T}|\mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{T}|\mathbf{x}^{0}\right)$
- Marginals $P(x_i^T | \mathbf{x}^0)$ can be computed either with MC or with Dynamical Message-Passing **[Lokhov, Mézard & al.'14]**
- Then maximize over \mathbf{x}^0 the likelihood $P(\mathscr{O}|\mathbf{x}^0) \simeq \prod_i P(\mathbf{x}_i^T = \mathscr{O}_i | \mathbf{x}^0)$
- Is the approximation accurate? If no, is it because of Naive MF?
- Note that Naive MF can easily be replaced by e.g.:
 - $P\left(\mathbf{x}^{T}|\mathbf{x}^{0}\right) \simeq \prod_{\langle ij \rangle} \frac{P\left(\mathbf{x}_{i}^{T}, \mathbf{x}_{j}^{T}|\mathbf{x}^{0}\right)}{P\left(\mathbf{x}_{i}^{T}|\mathbf{x}^{0}\right)P\left(\mathbf{x}_{j}^{T}|\mathbf{x}^{0}\right)} \prod_{i} P\left(\mathbf{x}_{i}^{T}|\mathbf{x}^{0}\right) \text{ [Lokhov, Mézard & al.'14, maybe]}$

Alfredo Braunstein Bayesian inference of cascades on networks Politecnico di Torino

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction	$P(\mathbf{x}^{0} \mathbf{x}^{T})$	Belief Propagation	$P(\mathbf{x}^T \lambda, \mu)$	Conclusion
00	0000	0000	0000	0
0	000			
The problem and cla	ssical approaches			

Naive Bayes (2/3)

Alfredo Braunstein Bayesian inference of cascades on networks

Belief Propagation

 $P\left(\mathbf{x}^{T}|\boldsymbol{\lambda},\boldsymbol{\mu}\right)$

Conclusion

The problem and classical approaches

Naive Bayes (2/3)

Alfredo Braunstein Bayesian inference of cascades on networks

Belief Propagation

 $P\left(\mathbf{x}^{T}|\boldsymbol{\lambda},\boldsymbol{\mu}\right)$

Conclusion

The problem and classical approaches

Naive Bayes (2/3)

・ロト ・ 西 ト ・ ヨ ト ・ ヨ ・ うへぐ

Belief Propagation

 $P\left(\mathbf{x}^{T}|\boldsymbol{\lambda},\boldsymbol{\mu}\right)$

Conclusion

The problem and classical approaches

Naive Bayes (3/3)

• Sites x_i^T and x_k^T interact e.g. through x_i^{T-1}

Alfredo Braunstein Bayesian inference of cascades on networks ・ロト ・ 語 × ・ E × ・ E ・ へのく

Belief Propagation

イロト イロト イヨト イヨト

Conclusion

The problem and classical approaches

Naive Bayes (3/3)

- Sites x_i^T and x_k^T interact e.g. through x_i^{T-1}
- Interactions between surface (t = T) variables are long-range

Belief Propagation

(日) (周) (王) (王)

Conclusion

The problem and classical approaches

Naive Bayes (3/3)

- Sites x_i^T and x_k^T interact e.g. through x_i^{T-1}
- Interactions between surface (t = T) variables are long-range
- The real problem is not to compute $P\left(x_i^T, x_j^T | \mathbf{x}^0\right)$ accurately but to give a "functional" parametrization of $P\left(\mathbf{x}^T | \mathbf{x}^0\right)$

Alfredo Braunstein Bayesian inference of cascades on networks

Belief Propagation

Conclusion

The problem and classical approaches

Naive Bayes (3/3)

- Sites x_i^T and x_k^T interact e.g. through x_i^{T-1}
- Interactions between surface (t = T) variables are long-range
- The real problem is not to compute $P\left(x_i^T, x_j^T | \mathbf{x}^0\right)$ accurately but to give a "functional" parametrization of $P\left(\mathbf{x}^T | \mathbf{x}^0\right)$
- [Note: to recover the MRF independence property one should fix full columns/trajectories x_i^{0:T}]

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Conclusion

A static representation of SIR

Parametrization of trajectories

• We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.

Alfredo Braunstein Bayesian inference of cascades on networks

Introduction	$P(\mathbf{x}^{0} \mathbf{x}^{T})$
00	0000 /
0	•00
A static representation	on of SIR

Conclusion

Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
- Single site trajectories, e.g. **x**_i = SSS**IRRRRR** can be parametrized by a single *infection time t*_i

Introduction	$P(\mathbf{x}^{0} \mathbf{x}^{T})$
00	0000 /
0	000
A static representation o	f SIR

Conclusion

Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
- Single site trajectories, e.g. **x**_i = SSS**IRRRRR** can be parametrized by a single *infection time t*_i
- We can divide the process in two parts:

Introduction	$P(\mathbf{x}^{0} \mathbf{x}^{T})$
00	0000 /
0	•00
A static representation of	of SIR

Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
- Single site trajectories, e.g. **x**_i = SSS**IRRRRR** can be parametrized by a single *infection time t*_i

Belief Propagation

 $P(\mathbf{x}^T | \lambda, \mu)$

- We can divide the process in two parts:
 - First, stochastic "delays" s_{ij} ∈ {0,∞} for all (ij) ∈ E are extracted independently with probabilities P (s_{ij} = 0) = λ

Sac

Introduction	$P(\mathbf{x}^{0} \mathbf{x}^{T})$
00	0000 /
0	● 00
A static representation	of SIR

Conclusion

Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
- Single site trajectories, e.g. **x**_i = SSS**IRRRRR** can be parametrized by a single *infection time t*_i
- We can divide the process in two parts:
 - First, stochastic "delays" $s_{ij} \in \{0, \infty\}$ for all $(ij) \in E$ are extracted independently with probabilities $P(s_{ij} = 0) = \lambda$
 - **1** Afterwards, all $t_i \neq 0$ can be computed **deterministically** with the following self-consisting equations

$$t_i = 1 + \min_{j \in \partial i} \left\{ t_j + s_{ji} \right\}$$

Alfredo Braunstein Bayesian inference of cascades on networks Politecnico di Torino

200

Introduction	$P(\mathbf{x}^{0} \mathbf{x}^{T})$
00	0000 '
0	0 00
A static representation o	f SIR

Parametrization of trajectories

- We will assume for simplicity $\mu = 1$. The case $\mu < 1$ is similar.
- Single site trajectories, e.g. **x**_i = SSS**IRRRRR** can be parametrized by a single *infection time t*_i

Belief Propagation

 $P(\mathbf{x}^T | \lambda, \mu)$

- We can divide the process in two parts:
 - First, stochastic "delays" $s_{ij} \in \{0,\infty\}$ for all $(ij) \in E$ are extracted independently with probabilities $P(s_{ij} = 0) = \lambda$
 - **1** Afterwards, all $t_i \neq 0$ can be computed **deterministically** with the following self-consisting equations

$$t_i = 1 + \min_{j \in \partial i} \left\{ t_j + s_{ji} \right\}$$

• Key: stochastic parameters are *independent*

Alfredo Braunstein Bayesian inference of cascades on networks 200

Belief Propagation

Conclusion

A static representation of SIR

A factorized distribution

$$\mathscr{P}(\mathbf{t}|\mathbf{x}^{0}) = \sum_{\mathbf{s}} \mathscr{P}(\mathbf{t}|\mathbf{s}, \mathbf{x}^{0}) \mathscr{P}(\mathbf{s})$$

・ロット (四) (山) (山) (山) (山) (山) (山) (山)

Alfredo Braunstein Bayesian inference of cascades on networks

Belief Propagation

Conclusion

A static representation of SIR

A factorized distribution

$$\mathscr{P}\left(\mathbf{t}|\mathbf{x}^{0}\right) = \sum_{\mathbf{s}} \mathscr{P}\left(\mathbf{t}|\mathbf{s}, \mathbf{x}^{0}\right) \mathscr{P}\left(\mathbf{s}\right)$$

Define

Alfredo Braunstein Bayesian inference of cascades on networks

Belief Propagation

Conclusion

A static representation of SIR

A factorized distribution

$$\mathscr{P}(\mathbf{t}|\mathbf{x}^{0}) = \sum_{\mathbf{s}} \mathscr{P}(\mathbf{t}|\mathbf{s}, \mathbf{x}^{0}) \mathscr{P}(\mathbf{s})$$

Define

$$\mathscr{Q} = \frac{1}{Z} \prod_{i} \phi_{i} \prod_{i,j} \boldsymbol{\omega}_{ij}$$

Alfredo Braunstein Bayesian inference of cascades on networks

3 Politecnico di Torino

590

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶

Belief Propagation

Conclusion

A static representation of SIR

A factorized distribution

$$\mathscr{P}(\mathbf{t}|\mathbf{x}^{0}) = \sum_{\mathbf{s}} \mathscr{P}(\mathbf{t}|\mathbf{s}, \mathbf{x}^{0}) \mathscr{P}(\mathbf{s})$$

Define

$$\mathscr{Q} = \frac{1}{Z} \prod_{i} \phi_{i} \prod_{i,j} \boldsymbol{\omega}_{ij}$$

Then
$$\mathscr{P}(\mathbf{t}|\mathbf{x}^{0}) = \sum_{s} \mathscr{Q}(\mathbf{t}, \mathbf{s}, \mathbf{x}^{0})$$

Alfredo Braunstein Bayesian inference of cascades on networks

3 Politecnico di Torino

590

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶

Adding priors

• \mathbf{x}^T depends **deterministically** on t: $P(\mathbf{x}^T | \mathbf{t}) = \prod_i \xi_i(t_i, x_i^T)$ where $\xi_i(t_i, x_i^T)$ is the indicator function of

$$\left(x_{i}^{T} = \mathbb{S}, t_{i} > T\right) \lor \left(x_{i}^{T} = \mathbf{I}, t_{i} = T\right) \lor \left(x_{i}^{T} = \mathbf{R}, t_{i} < T\right)$$

Introduction	$P(\mathbf{x}^{0} \mathbf{x}^{T})$	Belief Propagation	$P(\mathbf{x}^T \lambda, \mu)$
00	0000	0000	0000
0	000		
A static representati	on of SIR		

Adding priors

• \mathbf{x}^T depends **deterministically** on t: $P(\mathbf{x}^T | \mathbf{t}) = \prod_i \xi_i(t_i, x_i^T)$ where $\xi_i(t_i, x_i^T)$ is the indicator function of

$$\left(x_{i}^{T} = \mathbb{S}, t_{i} > T\right) \lor \left(x_{i}^{T} = \mathbf{I}, t_{i} = T\right) \lor \left(x_{i}^{T} = \mathbf{R}, t_{i} < T\right)$$

• \mathbf{x}^{0} have a prior concentrated on single-seed initial conditions: $P(\mathbf{x}^{0}) = \prod_{i} \gamma_{i} (x_{i}^{0})$ with $\gamma_{i} (x_{i}^{0} = \mathbf{I})$ very small.

Sac

Introduction	$P(\mathbf{x}^{0} \mathbf{x}^{T})$	Belief Propagation	$P(\mathbf{x}^T \lambda, \mu)$
00	0000	0000	0000
0	000		
A static representati	on of SIR		

Adding priors

• \mathbf{x}^T depends **deterministically** on t: $P(\mathbf{x}^T | \mathbf{t}) = \prod_i \xi_i(t_i, x_i^T)$ where $\xi_i(t_i, x_i^T)$ is the indicator function of

$$\left(x_{i}^{T} = \mathbb{S}, t_{i} > T\right) \lor \left(x_{i}^{T} = \mathbf{I}, t_{i} = T\right) \lor \left(x_{i}^{T} = \mathbf{R}, t_{i} < T\right)$$

- \mathbf{x}^{0} have a prior concentrated on single-seed initial conditions: $P(\mathbf{x}^{0}) = \prod_{i} \gamma_{i} (x_{i}^{0})$ with $\gamma_{i} (x_{i}^{0} = \mathbf{I})$ very small.
- Finally, we can write the **posterior** distribution $P(\mathbf{x}^0|\mathbf{x}^T) \propto \sum_{\mathbf{t}} P(\mathbf{x}^T|\mathbf{t}) P(\mathbf{t}|\mathbf{x}^0) P(\mathbf{x}^0)$ as

$$P\left(\mathbf{x}^{0}|\mathbf{x}^{T}\right) \propto \sum_{\mathbf{t}} \sum_{\mathbf{s}} \prod_{ij} \phi_{ij} \prod_{i} \phi_{i} \xi_{i} \gamma_{i}$$
(1)

Alfredo Braunstein Bayesian inference of cascades on networks Politecnico di Torino

Belief Propagation

Conclusion

Belief Propagation

Belief Propagation

$$P\left(\mathbf{x}^{0}|\mathbf{x}^{T}\right) \propto \sum_{\mathbf{t}} \sum_{\mathbf{s}} \left[\prod_{ij} \phi_{ij} \prod_{i} \phi_{i} \xi_{i} \gamma_{i}\right] = \sum_{\mathbf{t}} \sum_{\mathbf{s}} Q\left(\mathbf{x}^{0}, \mathbf{t}, \mathbf{s}\right)$$

Single-instance RS cavity equations / Belief Propagation

- Fixed-point equation $\mathbf{m} = F_{BP}(\mathbf{m})$ for a vector \mathbf{m} (called *cavity* marginals or messages) that is solved by iteration.
 - On a fixed point (approximate) marginals $P(t_i | \mathbf{x}^T)$ or $P(x_i^0 | \mathbf{x}^T)$ can be computed.
 - Fast: each iteration is often linear in the number of edges, needed number of iterations is usually logarithmic
 - Exact if the *factor graph* is acyclic

Belief Propagation 0000

Conclusion

Belief Propagation

Results on random graphs

N
$$=$$
 1000, k $=$ 4, λ $=$ 0.5, μ $=$ 0.5, γ $=$ 10⁻⁶

unknown $T - t_0 = 10$, 60% observed nodes

Alfredo Braunstein Bayesian inference of cascades on networks

Э Politecnico di Torino

Sac

《曰》 《聞》 《臣》 《臣》

Belief Propagation

Results on random graphs RRG $N = 1000, k = 4, \mu = 0.5, T - t_0 = 10$ and preferential attachment $\langle k \rangle = 4, N = 1000, T - t_0 = 5$

- Belief Propagation
- Dynamic message-passing [Lokhov, Mézard, Ohta & Zdeborová'14]
- Jordan centrality [Zhu & Ying'12]

Alfredo Braunstein Bayesian inference of cascades on networks

Time-evolving networks

• Temporal networks can be analyzed by using a modified ω_{ii}

< □ ト < □ ト < 三 ト < 三 ト

Conclusion

Inference of parameters

■ The likelihood of λ, μ can be computed as: $P(\mathbf{x}^T | \lambda, \mu) = \sum_{t, g, x^0} P(\mathbf{x}^T | \mathbf{t}, \mathbf{g}) P(\mathbf{t}, \mathbf{g} | \mathbf{x}^0, \lambda, \mu) P(\mathbf{x}^0)$

Alfredo Braunstein Bayesian inference of cascades on networks

Conclusion

Inference of parameters

■ The likelihood of λ, μ can be computed as: $P(\mathbf{x}^T | \lambda, \mu) = \sum_{t, g, \mathbf{x}^0} P(\mathbf{x}^T | \mathbf{t}, \mathbf{g}) P(\mathbf{t}, \mathbf{g} | \mathbf{x}^0, \lambda, \mu) P(\mathbf{x}^0) = Z$

Alfredo Braunstein Bayesian inference of cascades on networks < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

Inference of parameters

■ The likelihood of λ, μ can be computed as: $P(\mathbf{x}^T | \lambda, \mu) = \sum_{t, \mathbf{g}, \mathbf{x}^0} P(\mathbf{x}^T | \mathbf{t}, \mathbf{g}) P(\mathbf{t}, \mathbf{g} | \mathbf{x}^0, \lambda, \mu) P(\mathbf{x}^0) = Z \simeq Z_{Bethe}$

イロト イロト イヨト イヨト

Conclusion

Inference of parameters

■ The likelihood of λ, μ can be computed as: $P(\mathbf{x}^T | \lambda, \mu) = \sum_{t, \mathbf{g}, \mathbf{x}^0} P(\mathbf{x}^T | \mathbf{t}, \mathbf{g}) P(\mathbf{t}, \mathbf{g} | \mathbf{x}^0, \lambda, \mu) P(\mathbf{x}^0) = Z \simeq Z_{Bethe}$

RRG k = 4, N = 1000

Alfredo Braunstein Bayesian inference of cascades on networks Politecnico di Torino

San

Introduction	
00	
0	
Inferring λ and	μ

Conclusion

Interleaved BP+GA

• We need to maximize the log-likelihood $\mathscr{L} = \log Z \simeq -f_{Bethe}$ with respect to λ (and/or μ), but

$$\frac{\partial}{\partial \lambda} \left[f(\mathbf{m}, \lambda) \right] = \nabla_{\mathbf{m}} f \cdot \frac{\partial \mathbf{m}}{\partial \lambda} + \frac{\partial f}{\partial \lambda}$$

Alfredo Braunstein Bayesian inference of cascades on networks <ロ> < 団> < 団> < 三> < 三> < 三</p>

Introduction	
00	
0	
Inferring λ and	μ

Conclusion

Interleaved BP+GA

• We need to maximize the log-likelihood $\mathscr{L} = \log Z \simeq -f_{Bethe}$ with respect to λ (and/or μ), but

$$\frac{\partial}{\partial \lambda} \left[f(\mathbf{m}, \lambda) \right] = \nabla_{\mathbf{m}} f \cdot \frac{\partial \mathbf{m}}{\partial \lambda} + \frac{\partial f}{\partial \lambda} = \frac{\partial f}{\partial \lambda}$$

because $\nabla_{\mathbf{m}} f \equiv 0$ on a FP of BP, as the BP solution is a variational critical point of f.

Conclusion

Interleaved BP+GA

• We need to maximize the log-likelihood $\mathscr{L} = \log Z \simeq -f_{Bethe}$ with respect to λ (and/or μ), but

$$\frac{\partial}{\partial \lambda} \left[f(\mathbf{m}, \lambda) \right] = \nabla_{\mathbf{m}} f \cdot \frac{\partial \mathbf{m}}{\partial \lambda} + \frac{\partial f}{\partial \lambda} = \frac{\partial f}{\partial \lambda}$$

because $\nabla_{\mathbf{m}} f \equiv 0$ on a FP of BP, as the BP solution is a variational critical point of f.

• Now $\frac{\partial f}{\partial \lambda}(\mathbf{m}, \lambda) = -\frac{1}{Z} \frac{\partial}{\partial \lambda} \left\{ \sum_{\mathbf{t}, \mathbf{s}} e^{\sum_i \log \psi_i + \sum_{\langle ij \rangle} \log \phi_{ij}} \right\} = -\sum_{\mathbf{t}, \mathbf{s}} \sum_{\langle ij \rangle} \left\{ \frac{\partial}{\partial \lambda} \log \phi_{ij} \right\} \frac{1}{Z} e^{\sum_i \log \psi_i + \sum_{\langle ij \rangle} \log \phi_{ij}} = -\sum_{\langle ij \rangle} \left\langle \frac{\partial}{\partial \lambda} \log \phi_{ij} \right\rangle$, i.e. the computation of an observable

Conclusion

Interleaved BP+GA

• We need to maximize the log-likelihood $\mathscr{L} = \log Z \simeq -f_{Bethe}$ with respect to λ (and/or μ), but

$$\frac{\partial}{\partial \lambda} \left[f(\mathbf{m}, \lambda) \right] = \nabla_{\mathbf{m}} f \cdot \frac{\partial \mathbf{m}}{\partial \lambda} + \frac{\partial f}{\partial \lambda} = \frac{\partial f}{\partial \lambda}$$

because $\nabla_{\mathbf{m}} f \equiv 0$ on a FP of BP, as the BP solution is a variational critical point of f.

- Now $\frac{\partial f}{\partial \lambda}(\mathbf{m}, \lambda) = -\frac{1}{Z} \frac{\partial}{\partial \lambda} \left\{ \sum_{\mathbf{t}, \mathbf{s}} e^{\sum_{i} \log \psi_{i} + \sum_{\langle ij \rangle} \log \phi_{ij}} \right\} = -\sum_{\mathbf{t}, \mathbf{s}} \sum_{\langle ij \rangle} \left\{ \frac{\partial}{\partial \lambda} \log \phi_{ij} \right\} \frac{1}{Z} e^{\sum_{i} \log \psi_{i} + \sum_{\langle ij \rangle} \log \phi_{ij}} = -\sum_{\langle ij \rangle} \left\langle \frac{\partial}{\partial \lambda} \log \phi_{ij} \right\rangle$, i.e. the computation of an observable
- Gradient updates can be interleaved with BP updates to recover the parameters in one single convergence
- Same fixed points as EM but faster

소리가 지원가 지금가 지금가 다 물

Conclusion

Inference of network topology

The same approach can be used to infer single-link parameters from multiple cascades:

$$rac{\partial \log \left(\prod_{\mu=1}^M Z^\mu
ight)}{\partial \lambda_{ij}} = -\sum_{\mu=1}^M rac{\partial f^\mu}{\partial \lambda_{ij}} = \sum_{\mu=1}^M \left\langle rac{\partial}{\partial \lambda_{ij}} \log \phi_{ij}
ight
angle_\mu$$

• The factor graph consists in *M* independent (fully-connected $N \times N$) networks that share the matrix λ

イロト イロト イヨト イヨト

Conclusion

Inference of network topology

Karate club network ($N = 34, \lambda = 0.3, \mu = 0.4, T = 5$)

・ロット (四) (山) (山) (山) (山) (山) (山) (山)

Conclusion

Inference of network topology

Karate club network ($N = 34, \lambda = 0.3, \mu = 0.4, T = 5$)

Alfredo Braunstein Bayesian inference of cascades on networks

Introduction	
00	
0	

Conclusion

Conclusions

Conclusions

- The Bethe parametrization of the probability space of dynamical trajectories gives great **flexibility!**
 - Gives a practical solution to the patient-zero problem on real and synthetic networks (exact on acyclic graphs) with many types of observations (incomplete, noisy, etc)
 - Allows to tackle the problem of inferring edges (*ij*) in the supporting network having no direct access to co-infection events x_i^{t-1} = I, x_i^{t-1} = S and x_i^t = I.
 - More on: PRL 112(11) 118701 (2014), JSTAT (10), P10016 (2014)

Thank you!

소리가 지원가 지금가 지금가 다 물