Bayesian inference of cascades on networks

Alfredo Braunstein
Politecnico di Torino
NIPS
Montreal, Dec 2015
A. Ingrosso, J. Bindi, L. Dall'Asta

The patient zero or index case problem

The patient zero or index case problem

INPUT

The patient zero or index case problem

INPUT

- A contact network in a community:
- Hospital wards [Vanhems'13]
- Livestock Surveillance [Bajardi'12]
- Many others, e.g.: Sexual contacts [Rocha'10], Proximity in a closed environment [Isella'10]

The patient zero or index case problem

INPUT

- A contact network in a community:

■ Hospital wards [Vanhems'13]
■ Livestock Surveillance [Bajardi'12]

- Many others, e.g.: Sexual contacts [Rocha'10], Proximity in a closed environment [Isella'10]
- An epidemic snapshot at time $t=T$
- Susceptible
- Infected
- Recovered

The patient zero or index case problem

INPUT

- A contact network in a community:

■ Hospital wards [Vanhems'13]
■ Livestock Surveillance [Bajardi'12]

- Many others, e.g.: Sexual contacts [Rocha'10], Proximity in a closed environment [Isella'10]
- An epidemic snapshot at time $t=T$
- Susceptible
- Infected
- Recovered

OUTPUT
■ Find the source node at time $t=0$

Related Problems

INPUTS

- Various types of observations: time and space scattered and noisy
- Unknown epidemic "age" T
- Time-evolving networks
- Multiple sources

Related Problems

INPUTS

- Various types of observations: time and space scattered and noisy
- Unknown epidemic "age" T
- Time-evolving networks
- Multiple sources

OUTPUTS

- Identifying contagion paths and undiscovered positives
- Predicting of future development of an outbreak
- Reconstructing the contact network (from the observation of multiple cascades)

The (discrete) SIR process on a network

Per-vertex variables $x_{i} \in\{\mathbb{S}, \mathbf{I}, \mathbf{R}\}$. At each t, each infected node $x_{i}^{t} \in \mathbf{I}$

- attempts contagion to susceptible neighbors in $x_{j}^{t} \in \mathbb{S}$ with probability λ. If successful, $x_{j}^{t+1}=I$
- attempts recovery with probability μ. If successful, $x_{i}^{t+1}=\mathbf{R}$

The (discrete) SIR process on a network

Per-vertex variables $x_{i} \in\{\mathbb{S}, \mathbf{I}, \mathbf{R}\}$. At each t, each infected node $x_{i}^{t} \in \mathbf{I}$

- attempts contagion to susceptible neighbors in $x_{j}^{t} \in \mathbb{S}$ with probability λ. If successful, $x_{j}^{t+1}=I$
- attempts recovery with probability μ. If successful, $x_{i}^{t+1}=\mathbf{R}$

$$
\begin{aligned}
P\left(\mathbf{x}^{t+1} \mid \mathrm{x}^{t}\right) & =\prod_{i} P\left(x_{i}^{t+1} \mid \mathrm{x}^{t}\right), \\
P\left(x_{i}^{t+1}=\mathbb{S} \mid \mathbf{x}^{t}\right) & =\mathbb{I}\left[x_{i}^{t}=\mathbb{S}\right] \prod_{j \in \partial i}\left(1-\lambda \mathbb{I}\left[x_{j}^{t}=\mathbb{1}\right]\right) \\
P\left(x_{i}^{t+1}=\mathbb{I} \mid \mathrm{x}^{t}\right) & =\mathbb{I}\left[x_{i}^{t}=\mathbb{I}\right](1-\mu)+\mathbb{I}\left[x_{i}^{t}=\mathbb{S}\right]\left(1-\prod_{j \in \partial i}\left(1-\lambda \mathbb{I}\left[x_{j}^{t}=\mathbb{I}\right]\right)\right) \\
P\left(x_{i}^{t+1}=\mathbf{R} \mid \mathbf{x}^{t}\right) & =\mathbb{I}\left[x_{i}^{t}=\mathbb{I}\right] \mu+\mathbb{T}\left[x_{i}^{t}=\mathbf{R}\right]
\end{aligned}
$$

The problem and classical approaches

Approaches

- Topological centrality measures [Shah'10], [Comin'11], [Zhu'12]

Approaches

- Topological centrality measures [Shah'10], [Comin'11], [Zhu'12]
- Bayesian inference: compute $P\left(\mathbf{x}^{0} \mid \mathbf{x}^{T}\right)$

■ "Brute-Force" Monte Carlo (variant: use soft compatibility [Antulov-Fantulin'14])

- Naive Bayes
- Belief Propagation

The problem and classical approaches

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution $P\left(\mathbf{x}^{T} \mid \mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{\top} \mid \mathbf{x}^{0}\right)$
- Marginals $P\left(x_{i}^{\top} \mid \mathbf{x}^{0}\right)$ can be computed either with MC or with Dynamical Message-Passing [Lokhov, Mézard \& al.'14]

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution $P\left(\mathbf{x}^{T} \mid \mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{\top} \mid \mathbf{x}^{0}\right)$
- Marginals $P\left(x_{i}^{\top} \mid \mathbf{x}^{0}\right)$ can be computed either with MC or with Dynamical Message-Passing [Lokhov, Mézard \& al.'14]
- Then maximize over \mathbf{x}^{0} the likelihood $P\left(\mathscr{O} \mid \mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{T}=\mathscr{O}_{i} \mid \mathbf{x}^{0}\right)$

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution $P\left(\mathbf{x}^{T} \mid \mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{\top} \mid \mathbf{x}^{0}\right)$
- Marginals $P\left(x_{i}^{\top} \mid \mathbf{x}^{0}\right)$ can be computed either with MC or with Dynamical Message-Passing [Lokhov, Mézard \& al.'14]
- Then maximize over \mathbf{x}^{0} the likelihood $P\left(\mathscr{O} \mid \mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{T}=\mathscr{O}_{i} \mid \mathbf{x}^{0}\right)$
- Is the approximation accurate? If no, is it because of Naive MF?

The problem and classical approaches

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution $P\left(\mathbf{x}^{T} \mid \mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{\top} \mid \mathbf{x}^{0}\right)$
- Marginals $P\left(x_{i}^{\top} \mid \mathbf{x}^{0}\right)$ can be computed either with MC or with Dynamical Message-Passing [Lokhov, Mézard \& al.'14]
- Then maximize over \mathbf{x}^{0} the likelihood $P\left(\mathscr{O} \mid \mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{T}=\mathscr{O}_{i} \mid \mathbf{x}^{0}\right)$
- Is the approximation accurate? If no, is it because of Naive MF?
- Note that Naive MF can easily be replaced by e.g.:
$P\left(\mathbf{x}^{T} \mid \mathbf{x}^{0}\right) \simeq \prod_{\langle i j\rangle} \frac{P\left(x_{i}^{T}, x_{j}^{T} \mid x^{0}\right)}{P\left(x_{i}^{T} \mid x^{0}\right) P\left(x_{j}^{T} \mid x^{0}\right)} \Pi_{i} P\left(x_{i}^{T} \mid \mathbf{x}^{0}\right)$ [Lokhov, Mézard
\& al.'14, maybe]

The problem and classical approaches

Naive Bayes (1/3)

- Assume the following naive MF structure for the distribution $P\left(\mathbf{x}^{T} \mid \mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{\top} \mid \mathbf{x}^{0}\right)$
- Marginals $P\left(x_{i}^{\top} \mid \mathbf{x}^{0}\right)$ can be computed either with MC or with Dynamical Message-Passing [Lokhov, Mézard \& al.'14]
- Then maximize over \mathbf{x}^{0} the likelihood $P\left(\mathscr{O} \mid \mathbf{x}^{0}\right) \simeq \prod_{i} P\left(x_{i}^{T}=\mathscr{O}_{i} \mid \mathbf{x}^{0}\right)$
- Is the approximation accurate? If no, is it because of Naive MF?
- Note that Naive MF can easily be replaced by e.g.:
$P\left(\mathbf{x}^{T} \mid \mathbf{x}^{0}\right) \simeq \prod_{\langle i j\rangle} \frac{P\left(x_{i}^{T}, x_{j}^{T} \mid x^{0}\right)}{P\left(x_{i}^{T} \mid x^{0}\right) P\left(x_{j}^{T} \mid x^{0}\right)} \Pi_{i} P\left(x_{i}^{T} \mid \mathbf{x}^{0}\right)$ [Lokhov, Mézard
\& al.'14, maybe]

The problem and classical approaches

Naive Bayes (2/3)

Graph

Ising
$\operatorname{Pearson}\left(\sigma_{j}, \sigma_{k} \mid \sigma_{i}=1\right)$
$\operatorname{Pearson}\left(x_{j}^{\top}, x_{k}^{\top} \mid x_{i}^{\top}=l\right)$

The problem and classical approaches

Naive Bayes (2/3)

The problem and classical approaches

Naive Bayes (2/3)

The problem and classical approaches

Naive Bayes (3/3)

- Sites x_{j}^{T} and x_{k}^{T} interact e.g. through x_{i}^{T-1}

The problem and classical approaches

Naive Bayes (3/3)

- Sites x_{j}^{T} and x_{k}^{T} interact e.g. through x_{i}^{T-1}
- Interactions between surface ($t=T$) variables are long-range

The problem and classical approaches

Naive Bayes (3/3)

- Sites x_{j}^{T} and x_{k}^{T} interact e.g. through x_{i}^{T-1}
- Interactions between surface ($t=T$) variables are long-range
- The real problem is not to compute $P\left(x_{i}^{T}, x_{j}^{T} \mid \mathbf{x}^{0}\right)$ accurately but to give a "functional" parametrization of $P\left(\mathbf{x}^{T} \mid \mathbf{x}^{0}\right)$

The problem and classical approaches

Naive Bayes (3/3)

- Sites x_{j}^{T} and x_{k}^{T} interact e.g. through x_{i}^{T-1}
- Interactions between surface ($t=T$) variables are long-range
- The real problem is not to compute $P\left(x_{i}^{T}, x_{j}^{T} \mid \mathbf{x}^{0}\right)$ accurately but to give a "functional" parametrization of $P\left(\mathbf{x}^{T} \mid \mathbf{x}^{0}\right)$
- [Note: to recover the MRF independence property one should fix full columns/trajectories $\mathbf{x}_{i}^{0: T}$]

A static representation of SIR

Parametrization of trajectories

- We will assume for simplicity $\mu=1$. The case $\mu<1$ is similar.

Parametrization of trajectories

- We will assume for simplicity $\mu=1$. The case $\mu<1$ is similar.
- Single site trajectories, e.g. $\mathbf{x}_{i}=\mathbb{S S S I R R R R R}$ can be parametrized by a single infection time t_{i}

Parametrization of trajectories

- We will assume for simplicity $\mu=1$. The case $\mu<1$ is similar.
- Single site trajectories, e.g. $\mathbf{x}_{i}=\mathbb{S S S I R R R R R}$ can be parametrized by a single infection time t_{i}
- We can divide the process in two parts:

Parametrization of trajectories

- We will assume for simplicity $\mu=1$. The case $\mu<1$ is similar.
- Single site trajectories, e.g. $\mathbf{x}_{i}=\mathbb{S S S I R R R R R}$ can be parametrized by a single infection time t_{i}
- We can divide the process in two parts:

1 First, stochastic "delays" $s_{i j} \in\{0, \infty\}$ for all $(i j) \in E$ are extracted independently with probabilities $P\left(s_{i j}=0\right)=\lambda$

Parametrization of trajectories

- We will assume for simplicity $\mu=1$. The case $\mu<1$ is similar.
- Single site trajectories, e.g. $\mathbf{x}_{i}=\mathbb{S S S I R R R R R}$ can be parametrized by a single infection time t_{i}
- We can divide the process in two parts:

1 First, stochastic "delays" $s_{i j} \in\{0, \infty\}$ for all $(i j) \in E$ are extracted independently with probabilities $P\left(s_{i j}=0\right)=\lambda$

1 Afterwards, all $t_{i} \neq 0$ can be computed deterministically with the following self-consisting equations

$$
t_{i}=1+\min _{j \in \partial i}\left\{t_{j}+s_{j i}\right\}
$$

Parametrization of trajectories

- We will assume for simplicity $\mu=1$. The case $\mu<1$ is similar.
- Single site trajectories, e.g. $\mathbf{x}_{i}=\mathbb{S S S I R R R R R}$ can be parametrized by a single infection time t_{i}
- We can divide the process in two parts:

1 First, stochastic "delays" $s_{i j} \in\{0, \infty\}$ for all $(i j) \in E$ are extracted independently with probabilities $P\left(s_{i j}=0\right)=\lambda$

1 Afterwards, all $t_{i} \neq 0$ can be computed deterministically with the following self-consisting equations

$$
t_{i}=1+\min _{j \in \partial i}\left\{t_{j}+s_{j i}\right\}
$$

■ Key: stochastic parameters are independent

A static representation of SIR

A factorized distribution

$$
\mathscr{P}\left(\mathbf{t} \mid \mathbf{x}^{0}\right)=\sum_{\mathbf{s}} \mathscr{P}\left(\mathbf{t} \mid \mathbf{s}, \mathrm{x}^{0}\right) \mathscr{P}(\mathbf{s})
$$

A factorized distribution

$$
\mathscr{P}\left(\mathbf{t} \mid \mathbf{x}^{0}\right)=\sum_{\mathbf{s}} \mathscr{P}\left(\mathbf{t} \mid \mathrm{s}, \mathrm{x}^{0}\right) \mathscr{P}(\mathbf{s})
$$

Define
■ $\omega_{i j}\left(s_{i j}\right)=\lambda \delta\left(s_{i j}, 0\right)+(1-\lambda) \delta\left(s_{i j}, \infty\right)$

- $\phi_{i}\left(t_{i}, \mathbf{t}_{\partial i}, \mathbf{s}_{\partial i}, x_{i}^{0}\right)=\delta\left(t_{i}, \boldsymbol{\delta}\left(x_{i}^{0} ; \mathbf{I}\right)\left(1+\min _{j \in \partial i}\left\{t_{j}+s_{j i}\right\}\right)\right)$

A factorized distribution

$$
\mathscr{P}\left(\mathbf{t} \mid \mathbf{x}^{0}\right)=\sum_{\mathbf{s}} \mathscr{P}\left(\mathbf{t} \mid \mathrm{s}, \mathrm{x}^{0}\right) \mathscr{P}(\mathbf{s})
$$

Define
■ $\omega_{i j}\left(s_{i j}\right)=\lambda \delta\left(s_{i j}, 0\right)+(1-\lambda) \delta\left(s_{i j}, \infty\right)$

- $\phi_{i}\left(t_{i}, \mathbf{t}_{\partial i}, \mathbf{s}_{\partial i}, x_{i}^{0}\right)=\boldsymbol{\delta}\left(t_{i}, \boldsymbol{\delta}\left(x_{i}^{0} ; \mathbf{I}\right)\left(1+\min _{j \in \partial i}\left\{t_{j}+s_{j i}\right\}\right)\right)$

A factorized distribution

$$
\mathscr{P}\left(\mathbf{t} \mid \mathbf{x}^{0}\right)=\sum_{\mathbf{s}} \mathscr{P}\left(\mathbf{t} \mid \mathrm{s}, \mathrm{x}^{0}\right) \mathscr{P}(\mathbf{s})
$$

Define
■ $\omega_{i j}\left(s_{i j}\right)=\lambda \delta\left(s_{i j}, 0\right)+(1-\lambda) \delta\left(s_{i j}, \infty\right)$

- $\phi_{i}\left(t_{i}, \mathbf{t}_{\partial i}, \mathbf{s}_{\partial i}, x_{i}^{0}\right)=\boldsymbol{\delta}\left(t_{i}, \boldsymbol{\delta}\left(x_{i}^{0} ; \mathbf{I}\right)\left(1+\min _{j \in \partial i}\left\{t_{j}+s_{j i}\right\}\right)\right)$

$$
\mathscr{Q}=\frac{1}{Z} \prod_{i} \phi_{i} \prod_{i, j} \omega_{i j}
$$

Then $\mathscr{P}\left(\mathbf{t} \mid \mathbf{x}^{0}\right)=\sum_{\mathbf{s}} \mathscr{Q}\left(\mathbf{t}, \mathbf{s}, \mathbf{x}^{0}\right)$

A static representation of SIR

Adding priors

- \mathbf{x}^{T} depends deterministically on $\mathbf{t}: P\left(\mathbf{x}^{\top} \mid \mathbf{t}\right)=\prod_{i} \xi_{i}\left(t_{i}, x_{i}^{T}\right)$ where $\xi_{i}\left(t_{i}, x_{i}^{T}\right)$ is the indicator function of

$$
\left(x_{i}^{T}=\mathbb{S}, t_{i}>T\right) \vee\left(x_{i}^{T}=\mathbf{I}, t_{i}=T\right) \vee\left(x_{i}^{T}=\mathbf{R}, t_{i}<T\right)
$$

Adding priors

- \mathbf{x}^{T} depends deterministically on $\mathbf{t}: P\left(\mathbf{x}^{\top} \mid \mathbf{t}\right)=\prod_{i} \xi_{i}\left(t_{i}, x_{i}^{T}\right)$ where $\xi_{i}\left(t_{i}, x_{i}^{T}\right)$ is the indicator function of

$$
\left(x_{i}^{T}=\mathbb{S}, t_{i}>T\right) \vee\left(x_{i}^{T}=\mathbf{I}, t_{i}=T\right) \vee\left(x_{i}^{T}=\mathbf{R}, t_{i}<T\right)
$$

- \mathbf{x}^{0} have a prior concentrated on single-seed initial conditions:
$P\left(\mathrm{x}^{0}\right)=\prod_{i} \gamma_{i}\left(x_{i}^{0}\right)$ with $\gamma_{i}\left(x_{i}^{0}=I\right)$ very small.

Adding priors

- \mathbf{x}^{\top} depends deterministically on $\mathbf{t}: P\left(\mathbf{x}^{\top} \mid \mathbf{t}\right)=\prod_{i} \xi_{i}\left(t_{i}, x_{i}^{T}\right)$ where $\xi_{i}\left(t_{i}, x_{i}^{T}\right)$ is the indicator function of

$$
\left(x_{i}^{T}=\mathbb{S}, t_{i}>T\right) \vee\left(x_{i}^{T}=\mathbf{I}, t_{i}=T\right) \vee\left(x_{i}^{T}=\mathbf{R}, t_{i}<T\right)
$$

- \mathbf{x}^{0} have a prior concentrated on single-seed initial conditions:

$$
P\left(\mathrm{x}^{0}\right)=\Pi_{i} \gamma_{i}\left(x_{i}^{0}\right) \text { with } \gamma_{i}\left(x_{i}^{0}=I\right) \text { very small. }
$$

- Finally, we can write the posterior distribution

$$
\begin{align*}
& P\left(\mathbf{x}^{0} \mid \mathbf{x}^{T}\right) \propto \sum_{\mathbf{t}} P\left(\mathbf{x}^{T} \mid \mathbf{t}\right) P\left(\mathbf{t} \mid \mathbf{x}^{0}\right) P\left(\mathbf{x}^{0}\right) \text { as } \\
& \quad P\left(\mathbf{x}^{0} \mid \mathbf{x}^{T}\right) \propto \sum_{\mathbf{t}} \sum_{\mathbf{s}} \prod_{i j} \phi_{i j} \prod_{i} \phi_{i} \xi_{i} \gamma_{i} \tag{1}
\end{align*}
$$

Belief Propagation

$$
P\left(\mathbf{x}^{0} \mid \mathbf{x}^{T}\right) \propto \sum_{\mathbf{t}} \sum_{\mathbf{s}}\left[\prod_{i j} \phi_{i j} \prod_{i} \phi_{i} \xi_{i} \gamma_{i}\right]=\sum_{\mathbf{t}} \sum_{\mathbf{s}} Q\left(\mathbf{x}^{0}, \mathbf{t}, \mathbf{s}\right)
$$

Single-instance RS cavity equations / Belief Propagation

- Fixed-point equation $\mathbf{m}=F_{B P}(\mathbf{m})$ for a vector \mathbf{m} (called cavity marginals or messages) that is solved by iteration.
- On a fixed point (approximate) marginals $P\left(t_{i} \mid \mathbf{x}^{T}\right)$ or $P\left(x_{i}^{0} \mid \mathbf{x}^{T}\right)$ can be computed.
- Fast: each iteration is often linear in the number of edges, needed number of iterations is usually logarithmic
- Exact if the factor graph is acyclic

Results on random graphs

$$
N=1000, k=4, \lambda=0.5, \mu=0.5, \gamma=10^{-6}
$$

unknown $T-t_{0}=10,60 \%$ observed nodes

Results on random graphs

RRG $N=1000, k=4, \mu=0.5, T-t_{0}=10$ and preferential attachment $\langle k\rangle=4, N=1000, T-t_{0}=5$

- Belief Propagation
- Dynamic message-passing [Lokhov, Mézard, Ohta \& Zdeborová'14]
- Jordan centrality [Zhu \& Ying'12]

Time-evolving networks

■ Temporal networks can be analyzed by using a modified $\omega_{i j}$

Inference of parameters

- The likelihood of λ, μ can be computed as:

$$
P\left(\mathbf{x}^{\top} \mid \lambda, \mu\right)=\sum_{t, \mathbf{g}, \mathbf{x}^{0}} P\left(\mathbf{x}^{T} \mid \mathbf{t}, \mathbf{g}\right) P\left(\mathbf{t}, \mathbf{g} \mid \mathbf{x}^{0}, \lambda, \mu\right) P\left(\mathbf{x}^{0}\right)
$$

Inferring λ and μ

Inference of parameters

- The likelihood of λ, μ can be computed as:

$$
P\left(\mathbf{x}^{T} \mid \lambda, \mu\right)=\sum_{t, \mathbf{g}, \mathbf{x}^{0}} P\left(\mathbf{x}^{T} \mid \mathbf{t}, \mathbf{g}\right) P\left(\mathbf{t}, \mathbf{g} \mid \mathbf{x}^{0}, \lambda, \mu\right) P\left(\mathbf{x}^{0}\right)=Z
$$

Inferring λ and μ

Inference of parameters

- The likelihood of λ, μ can be computed as:

$$
P\left(\mathbf{x}^{T} \mid \lambda, \mu\right)=\sum_{t, \mathbf{g}, \mathbf{x}^{0}} P\left(\mathbf{x}^{T} \mid \mathbf{t}, \mathbf{g}\right) P\left(\mathbf{t}, \mathbf{g} \mid \mathbf{x}^{0}, \lambda, \mu\right) P\left(\mathbf{x}^{0}\right)=Z \simeq Z_{\text {Bethe }}
$$

Inferring λ and μ

Inference of parameters

- The likelihood of λ, μ can be computed as:

$$
P\left(\mathbf{x}^{T} \mid \lambda, \mu\right)=\sum_{t, \mathbf{g}, \mathbf{x}^{0}} P\left(\mathbf{x}^{T} \mid \mathbf{t}, \mathbf{g}\right) P\left(\mathbf{t}, \mathbf{g} \mid \mathbf{x}^{0}, \lambda, \mu\right) P\left(\mathbf{x}^{0}\right)=Z \simeq Z_{\text {Bethe }}
$$

$$
\text { RRG } k=4, N=1000
$$

Interleaved BP+GA

■ We need to maximize the \log-likelihood $\mathscr{L}=\log Z \simeq-f_{\text {Bethe }}$ with respect to λ (and/or μ), but

$$
\frac{\partial}{\partial \lambda}[f(\mathbf{m}, \lambda)]=\nabla_{\mathbf{m}} f \cdot \frac{\partial \mathbf{m}}{\partial \lambda}+\frac{\partial f}{\partial \lambda}
$$

Interleaved BP+GA

- We need to maximize the \log-likelihood $\mathscr{L}=\log Z \simeq-f_{\text {Bethe }}$ with respect to λ (and/or μ), but

$$
\frac{\partial}{\partial \lambda}[f(\mathbf{m}, \lambda)]=\nabla_{\mathbf{m}} f \cdot \frac{\partial \mathbf{m}}{\partial \lambda}+\frac{\partial f}{\partial \lambda}=\frac{\partial f}{\partial \lambda}
$$

because $\nabla_{\mathbf{m}} f \equiv 0$ on a FP of BP , as the BP solution is a variational critical point of f.

Interleaved BP+GA

- We need to maximize the \log-likelihood $\mathscr{L}=\log Z \simeq-f_{\text {Bethe }}$ with respect to λ (and/or μ), but

$$
\frac{\partial}{\partial \lambda}[f(\mathbf{m}, \lambda)]=\nabla_{\mathbf{m}} f \cdot \frac{\partial \mathbf{m}}{\partial \lambda}+\frac{\partial f}{\partial \lambda}=\frac{\partial f}{\partial \lambda}
$$

because $\nabla_{\mathbf{m}} f \equiv 0$ on a FP of BP , as the BP solution is a variational critical point of f.

- Now $\frac{\partial f}{\partial \lambda}(\mathbf{m}, \lambda)=-\frac{1}{Z} \frac{\partial}{\partial \lambda}\left\{\sum_{\mathbf{t}, \mathrm{s}} e^{\Sigma_{i} \log \psi_{i}+\sum_{\langle j\rangle} \log \phi_{i j}}\right\}=$
$-\sum_{\mathbf{t}, \mathbf{s}} \sum_{\langle i j\rangle}\left\{\frac{\partial}{\partial \lambda} \log \phi_{i j}\right\} \frac{1}{Z} e^{\sum_{i} \log \psi_{i}+\sum_{\langle i j} \log \phi_{i j}}=-\sum_{\langle i j\rangle}\left\langle\frac{\partial}{\partial \lambda} \log \phi_{i j}\right\rangle$, i.e.
the computation of an observable

Interleaved BP+GA

- We need to maximize the \log-likelihood $\mathscr{L}=\log Z \simeq-f_{\text {Bethe }}$ with respect to λ (and/or μ), but

$$
\frac{\partial}{\partial \lambda}[f(\mathbf{m}, \lambda)]=\nabla_{\mathbf{m}} f \cdot \frac{\partial \mathbf{m}}{\partial \lambda}+\frac{\partial f}{\partial \lambda}=\frac{\partial f}{\partial \lambda}
$$

because $\nabla_{\mathbf{m}} f \equiv 0$ on a FP of BP , as the BP solution is a variational critical point of f.

- Now $\frac{\partial f}{\partial \lambda}(\mathbf{m}, \lambda)=-\frac{1}{Z} \frac{\partial}{\partial \lambda}\left\{\sum_{\mathbf{t}, \mathrm{s}} \mathrm{e}^{\Sigma_{i} \log \psi_{i}+\sum_{i j j} \log \phi_{i j}}\right\}=$
$-\sum_{\mathbf{t}, \mathrm{s}} \sum_{\langle i j\rangle}\left\{\frac{\partial}{\partial \lambda} \log \phi_{i j}\right\} \frac{1}{Z} e^{\sum_{i} \log \psi_{i}+\sum_{\langle i j} \log \phi_{i j}}=-\sum_{\langle i j\rangle}\left\langle\frac{\partial}{\partial \lambda} \log \phi_{i j}\right\rangle$, i.e.
the computation of an observable
- Gradient updates can be interleaved with BP updates to recover the parameters in one single convergence
- Same fixed points as EM but faster

Inference of network topology

- The same approach can be used to infer single-link parameters from multiple cascades:

$$
\frac{\partial \log \left(\prod_{\mu=1}^{M} Z^{\mu}\right)}{\partial \lambda_{i j}}=-\sum_{\mu=1}^{M} \frac{\partial f^{\mu}}{\partial \lambda_{i j}}=\sum_{\mu=1}^{M}\left\langle\frac{\partial}{\partial \lambda_{i j}} \log \phi_{i j}\right\rangle_{\mu}
$$

- The factor graph consists in M independent (fully-connected $N \times N$) networks that share the matrix λ

Inferring λ and μ

Inference of network topology

Karate club network ($N=34, \lambda=0.3, \mu=0.4, T=5$)

Inferring λ and μ

Inference of network topology

Karate club network ($N=34, \lambda=0.3, \mu=0.4, T=5$)

$M=7$

$M=41$

$M=68$

$M=102$

- ROC area with $N(N-1) / 2$ points using sorted inferred values $\lambda_{i j}$

Belief Propagation

Conclusions

- The Bethe parametrization of the probability space of dynamical trajectories gives great flexibility!
- Gives a practical solution to the patient-zero problem on real and synthetic networks (exact on acyclic graphs) with many types of observations (incomplete, noisy, etc)
- Allows to tackle the problem of inferring edges (ij) in the supporting network having no direct access to co-infection events $x_{j}^{t-1}=\mathbf{I}, x_{i}^{t-1}=\mathbb{S}$ and $x_{i}^{t}=I$.
- More on: PRL 112(11) 118701 (2014), JSTAT (10), P10016 (2014)

Thank you!

