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The patient zero or index case problem

The patient zero or index case problem

INPUT

A contact network in a community:
Hospital wards [Vanhems’13]
Livestock Surveillance [Bajardi’12]
Many others, e.g.: Sexual contacts
[Rocha’10], Proximity in a closed
environment [Isella’10]

An epidemic snapshot at time t = T
◦ Susceptible
• Infected
• Recovered

OUTPUT
Find the source node at time t = 0
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The patient zero or index case problem

Related Problems

INPUTS
Various types of observations: time and space scattered and noisy
Unknown epidemic “age” T
Time-evolving networks
Multiple sources

OUTPUTS
Identifying contagion paths and undiscovered positives
Predicting of future development of an outbreak
Reconstructing the contact network (from the observation of
multiple cascades)
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The SIR model on networks

The (discrete) SIR process on a network
Per-vertex variables xi ∈ {S, I,R}. At each t, each infected node x ti ∈ I

attempts contagion to susceptible neighbors in x tj ∈ S with
probability λ . If successful, x t+1

j = I

attempts recovery with probability µ. If successful, x t+1
i = R

SIR Markov Chain
P
(
xt+1|xt

)
= ∏

i

P
(
x t+1
i |xt

)
,

P(x t+1
i = S|xt) = I[x ti = S] ∏

j∈∂ i

(1−λ I[x tj = I])

P(x t+1
i = I|xt) = I[x ti = I](1−µ)+ I[x ti = S](1−∏

j∈∂ i

(1−λ I[x tj = I]))

P(x t+1
i = R|xt) = I[x ti = I]µ + I[x ti = R]
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The problem and classical approaches

Approaches

Topological centrality measures [Shah’10], [Comin’11], [Zhu’12]

Bayesian inference: compute P
(
x0|xT

)
“Brute-Force” Monte Carlo (variant: use soft compatibility
[Antulov-Fantulin’14])
Naive Bayes
Belief Propagation
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The problem and classical approaches

Naive Bayes (1/3)

Assume the following naive MF structure for the distribution
P
(
xT |x0

)
'∏i P

(
xTi |x0

)
Marginals P

(
xTi |x0

)
can be computed either with MC or with

Dynamical Message-Passing [Lokhov, Mézard & al.’14]

Then maximize over x0 the likelihood P
(
O|x0

)
'∏i P

(
xTi = Oi |x0

)
Is the approximation accurate? If no, is it because of Naive MF?
Note that Naive MF can easily be replaced by e.g.:

P
(
xT |x0

)
'∏〈ij〉

P
(
xTi ,xTj |x

0
)

P(xTi |x0)P
(
xTj |x0

) ∏i P
(
xTi |x0

)
[Lokhov, Mézard

& al.’14, maybe]
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The problem and classical approaches

Naive Bayes (2/3)

Graph Ising SI

i = • Pearson(σj ,σk |σi=1) Pearson(xTj ,xTk |x
T
i =I )

"matrix-ising.dat" matrix u (-$1):2:3
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"matrix.dat" matrix u (-$1):2:3
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The problem and classical approaches

Naive Bayes (3/3) }
}

Sites xTj and xTk interact e.g. through xT−1
i

Interactions between surface (t = T ) variables are long-range

The real problem is not to compute P
(
xTi ,xTj |x0

)
accurately but to

give a “functional” parametrization of P
(
xT |x0

)
[Note: to recover the MRF independence property one should fix full
columns/trajectories x0:T

i ]
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A static representation of SIR

Parametrization of trajectories

We will assume for simplicity µ = 1. The case µ < 1 is similar.

Single site trajectories, e.g. xi = SSSIRRRRR can be parametrized
by a single infection time ti

We can divide the process in two parts:
1 First, stochastic “delays” sij ∈ {0,∞} for all (ij) ∈ E are extracted

independently with probabilities P
(
sij = 0

)
= λ

1 Afterwards, all ti 6= 0 can be computed deterministically with the
following self-consisting equations

ti = 1+min
j∈∂ i

{
tj + sji

}
Key: stochastic parameters are independent
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A static representation of SIR

A factorized distribution

P
(
t|x0)= ∑

s
P
(
t|s,x0)P (s)

Define

ωij

(
sij
)
= λδ

(
sij ,0

)
+(1−λ )δ

(
sij ,∞

)
φi

(
ti ,t∂ i ,s∂ i ,x

0
i

)
= δ

(
ti ,δ

(
x0
i ; I
)(

1+minj∈∂ i

{
tj + sji

}))

Q =
1
Z ∏

i

φi ∏
i ,j

ωij

Then P
(
t|x0

)
= ∑s Q

(
t,s,x0

)
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A static representation of SIR

Adding priors

xT depends deterministically on t: P
(
xT |t

)
= ∏i ξi

(
ti ,x

T
i

)
where

ξi

(
ti ,x

T
i

)
is the indicator function of(

xTi = S, ti > T
)
∨
(
xTi = I, ti = T

)
∨
(
xTi = R, ti < T

)

x0 have a prior concentrated on single-seed initial conditions:
P
(
x0
)
= ∏i γi

(
x0
i

)
with γi

(
x0
i = I

)
very small.

Finally, we can write the posterior distribution
P
(
x0|xT

)
∝ ∑tP

(
xT |t

)
P
(
t|x0

)
P
(
x0
)
as

P
(
x0|xT

)
∝ ∑

t
∑
s

∏
ij

φij ∏
i

φiξiγi (1)
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Belief Propagation

Belief Propagation

P
(
x0|xT

)
∝ ∑

t
∑
s

[
∏
ij

φij ∏
i

φiξiγi

]
= ∑

t
∑
s
Q
(
x0,t,s

)
Single-instance RS cavity equations / Belief Propagation

Fixed-point equation m= FBP (m) for a vector m (called cavity
marginals or messages) that is solved by iteration.

On a fixed point (approximate) marginals P
(
ti |xT

)
or P

(
x0
i |x

T
)
can

be computed.
Fast: each iteration is often linear in the number of edges, needed
number of iterations is usually logarithmic
Exact if the factor graph is acyclic
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Belief Propagation

Results on random graphs

N = 1000, k = 4, λ = 0.5, µ = 0.5, γ = 10−6
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Belief Propagation

Results on random graphs
RRG N = 1000,k = 4,µ = 0.5, T − t0 = 10 and preferential attachment
〈k〉= 4, N = 1000, T − t0 = 5

Belief Propagation
Dynamic message-passing [Lokhov, Mézard, Ohta &
Zdeborová’14]
Jordan centrality [Zhu & Ying’12]
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Time-evolving networks

Temporal networks can be analyzed by using a modified ωij
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Inferring λ and µ

Inference of parameters
The likelihood of λ ,µ can be computed as:
P
(
xT |λ ,µ

)
= ∑t,g,x0 P

(
xT |t,g

)
P
(
t,g|x0,λ ,µ

)
P
(
x0
)

= Z ' ZBethe

λ
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Inferring λ and µ

Interleaved BP+GA

We need to maximize the log-likelihood L = logZ '−fBethe with
respect to λ (and/or µ), but

∂

∂λ
[f (m,λ )] = ∇mf ·

∂m
∂λ

+
∂ f

∂λ

=
∂ f

∂λ

because ∇mf ≡ 0 on a FP of BP, as the BP solution is a variational
critical point of f .

Now ∂ f
∂λ

(m,λ ) =− 1
Z

∂

∂λ

{
∑t,s e

∑i logψi+∑〈ij〉 logφij

}
=

−∑t,s ∑〈ij〉

{
∂

∂λ
logφij

}
1
Z e

∑i logψi+∑〈ij〉 logφij =−∑〈ij〉

〈
∂

∂λ
logφij

〉
, i.e.

the computation of an observable
Gradient updates can be interleaved with BP updates to recover the
parameters in one single convergence
Same fixed points as EM but faster
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Inferring λ and µ

Inference of network topology

The same approach can be used to infer single-link parameters from
multiple cascades:

∂ log
(
∏

M
µ=1Z

µ
)

∂λij
=−

M

∑
µ=1

∂ f µ

∂λij
=

M

∑
µ=1

〈
∂

∂λij
logφij

〉
µ

The factor graph consists in M independent (fully-connected
N×N) networks that share the matrix λ
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Inferring λ and µ

Inference of network topology

Karate club network (N = 34,λ = 0.3,µ = 0.4,T = 5)
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Conclusions

Conclusions

The Bethe parametrization of the probability space of dynamical
trajectories gives great flexibility!

Gives a practical solution to the patient-zero problem on real and
synthetic networks (exact on acyclic graphs) with many types of
observations (incomplete, noisy, etc)
Allows to tackle the problem of inferring edges (ij) in the supporting
network having no direct access to co-infection events
x t−1
j = I,x t−1

i = S and x ti = I.
More on: PRL 112(11) 118701 (2014), JSTAT (10), P10016 (2014)

Thank you!
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